Skip to main content

Optical Imaging

  • Chapter
  • First Online:
Molecular Imaging in Oncology

Part of the book series: Recent Results in Cancer Research ((RECENTCANCER,volume 187))

Abstract

Non-invasive optical imaging techniques, such as fluorescence imaging (FI) or bioluminescence imaging (BLI) have emerged as important tools in biomedical research. As demonstrated in different animal disease models, they enable visualization of physiological and pathophysiological processes at the cellular and molecular level in vivo with high specificity. Optical techniques are easy to use, fast, and affordable. Furthermore, they are characterized by their high sensitivity. In FI, very low amounts of the imaging agent (nano- to femtomol or even less) can be detected. Due to the absorption and scattering of light in tissue, optical techniques exhibit a comparably low spatial resolution in the millimeter range and a depth limit of a few centimeters. However, non-invasive imaging of biological processes in small animals and in outer or inner surfaces as well as during surgery even in humans is feasible. Currently two agents for fluorescence imaging are clinically approved, namely indocyanine green (ICG) and 5-aminolevulinic acid (5-ALA). In the past years, a number of new optical imaging agents for FI and reporter systems for BLI have been developed and successfully tested in animal models. Some of the FI agents might promise the application in clinical oncology. In this chapter, we describe the basic principles of non-invasive optical imaging techniques, give examples for the visualization of biological processes in animal models of cancer, and discuss potential clinical applications in oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altinoğlu EI, Russin TJ, Kaiser JM, Barth BM, Eklund PC, Kester M, Adair JH (2008) Near-infrared emitting fluorophore-doped calcium phosphate nanoparticles for in vivo imaging of human breast cancer. ACS Nano 2(10):2075–2084

    Article  PubMed  Google Scholar 

  • Backer MV, Gaynutdinov TI, Patel V, Bandyopadhyaya AK, Thirumamagal BT, Tjarks W, Barth RF, Claffey K, Backer JM (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4(9):1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Backer MV, Patel V, Jehning BT, Backer JM (2006) Self-assembled “dock and lock” system for linking payloads to targeting proteins. Bioconjug Chem 17(4):912–919

    Article  PubMed  CAS  Google Scholar 

  • Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, Backer JM (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13(4):504–509

    Article  PubMed  CAS  Google Scholar 

  • Battle A (1993) Porphyrins, porphyrias, cancer and photodynamic therapy: a model of carcinogenesis. J Photochem Photobiol, B 20:5–22

    Article  Google Scholar 

  • Baumgartner R, Huber RM, Schulz H, Stepp H, Rick K, Gamarra F, Leberig A, Roth C (1996) Inhalation of 5-aminolevulinic acid: a new technique for fluorescence detection of early stage lung cancer. J Photochem Photobiol, B 36(2):169–174

    Article  CAS  Google Scholar 

  • Becker A, Riefke B, Ebert B, Sukowski U, Rinneberg H, Semmler W, Licha K (2000) Macromolecular contrast agents for optical imaging of tumors: comparison of indotricarbocyanine-labeled human serum albumin and transferrin. Photochem Photobiol 72(2):234–241

    Article  PubMed  CAS  Google Scholar 

  • Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice. Proc Natl Acad Sci U S A 99(1):377–382

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Bredow S, Mahmood U, Weissleder R, Tung CH (2001) Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model. Radiology 221(2):523–529

    Article  PubMed  CAS  Google Scholar 

  • Bremer C, Werner S, Langer HE (2009) Assessing activity of rheumatic arthritis with fluorescence optical imaging. Eur Muscoloskeletal Rev 4(2):96–100

    Google Scholar 

  • Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5(8):497–508

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Chen X (2006) Anti-angiogenic cancer therapy based on integrin alphavbeta3 antagonism. Anticancer Agents Med Chem 6(5):407–428

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, Gambhir SS, Chen X (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6(4):669–676

    Article  PubMed  CAS  Google Scholar 

  • Cai W, Chen X (2008) Multimodality molecular imaging of tumor angiogenesis. J Nucl Med 49(Suppl 2):113S–128S

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Levi J, Xiong Z, Gheysens O, Keren S, Chen X, Gambhir SS (2006) Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjugate Chem 17(3):662–669

    Article  CAS  Google Scholar 

  • Choi HK, Yessayan D, Choi HJ, Schellenberger E, Bogdanov A, Josephson L, Weissleder R, Ntziachristos V (2005) Quantitative analysis of chemotherapeutic effects in tumors using in vivo staining and correlative histology. Cell Oncol 27(3):183–190

    PubMed  CAS  Google Scholar 

  • Corsten MF, Hofstra L, Narula J, Reutelingsperger CP (2006) Counting heads in the war against cancer: defining the role of annexin A5 imaging in cancer treatment and surveillance. Cancer Res 66(3):1255–1260

    Article  PubMed  CAS  Google Scholar 

  • Cuccia DJ, Bevilacqua F, Durkin AJ, Merritt S, Tromberg BJ, Gulsen G, Yu H, Wang J, Nalcioglu O (2003) In vivo quantification of optical contrast agent dynamics in rat tumors by use of diffuse optical spectroscopy with magnetic resonance imaging coregistration. Appl Opt 42(16):2940–2950

    Article  PubMed  Google Scholar 

  • Cutler M (1931) Transillumination of the breast. Ann Surg 93(1):223–234

    Article  PubMed  CAS  Google Scholar 

  • DaCosta RS, Wilson BC, Marcon NE (2007) Fluorescence and spectral imaging. Scientific World J 7:2046–2071

    Google Scholar 

  • de Wet JR, Wood KV, DeLuca M, Helinski DR, Subramani S (1987) Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol 7(2):725–737

    PubMed  Google Scholar 

  • Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D (2009) Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 20(1):45–53

    Article  PubMed  CAS  Google Scholar 

  • Farah ME, Maia M, Rodrigues EB (2009) Dyes in ocular surgery: principles for use in chromovitrectomy. Am J Ophthalmol 148(3):332–340

    Article  PubMed  Google Scholar 

  • Flower RW, Hochheimer BF (1976) Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography. Johns Hopkins Med J 138(2):33–42

    PubMed  CAS  Google Scholar 

  • Fritsch C, Ruzicka T (2006) Fluorescence diagnosis and photodynamic therapy in dermatology from experimental state to clinic standard methods. J Environ Pathol Toxicol Oncol 25(1–2):425–439

    Article  PubMed  CAS  Google Scholar 

  • Grimm J, Wunder A (2005) Current state of molecular imaging research. Fortschr Röntgenstr 177(3):326–337

    Article  CAS  Google Scholar 

  • Haglund MM, Berger MS, Hochman DW (1996) Enhanced optical imaging of human gliomas and tumor margins. Neurosurgery 38(2):308–317

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Kizaka-Kondoh S, Hiraoka M (2005) Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 4(3):182–193

    PubMed  Google Scholar 

  • Harris A, Kagemann L, Ehrlich R, Rospigliosi C, Moore D, Siesky B (2008) Measuring and interpreting ocular blood flow and metabolism in glaucoma. Can J Ophthalmol 43(3):328–336

    PubMed  Google Scholar 

  • Hassenstein A, Meyer CH (2009) Clinical use and research applications of Heidelberg retinal angiography and spectral-domain optical coherence tomography—a review. Clin Experiment Ophthalmol 37(1):130–143

    Article  PubMed  Google Scholar 

  • Herbort CP, LeHoang P, Guex-Crosier Y (1998) Schematic interpretation of indocyanine green angiography in posterior uveitis using a standard angiographic protocol. Ophthalmology 105(3):432–440

    Article  PubMed  CAS  Google Scholar 

  • Hood JD, Cheresh DA (2002) Role of integrins in cell invasion and migration. Nat Rev Cancer 2(2):91–100

    Article  PubMed  Google Scholar 

  • Hsiao JK, Law B, Weissleder R, Tung CH (2006) In vivo imaging of tumor associated urokinase-type plasminogen activator activity. J Biomed Opt 11(3):34013

    Article  PubMed  Google Scholar 

  • Hsu AR, Hou LC, Veeravagu A, Greve JM, Vogel H, Tse V, Chen X (2006) In vivo near-infrared fluorescence imaging of integrin alphavbeta3 in an orthotopic glioblastoma model. Mol Imaging Biol 8(6):315–323

    Article  PubMed  Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  PubMed  CAS  Google Scholar 

  • Ito S, Muguruma N, Kimura T, Yano H, Imoto Y, Okamoto K, Kaji M, Sano S, Nagao Y (2006) Principle and clinical usefulness of the infrared fluorescence endoscopy. J Med Invest 53(1–2):1–8

    Article  PubMed  Google Scholar 

  • Kang Y, Choi M, Lee J, Koh GY, Kwon K, Choi C (2009) Quantitative analysis of peripheral tissue perfusion using spatiotemporal molecular dynamics. PLoS ONE 4(1):e4275

    Article  PubMed  Google Scholar 

  • Karl A, Zaak D, Tilki D, Hungerhuber E, Staehler M, Denzinger S, Stanislaus P, Tritschler S, Strittmatter F, Stief C, Burger M (2008) Diagnosis of urothelial carcinoma. Urologe 47(3):357–367

    Article  PubMed  CAS  Google Scholar 

  • Kennedy JC, Marcus SL, Pottier RH (1996) Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg 14(5):289–304

    PubMed  CAS  Google Scholar 

  • Klein A, Babilas P, Karrer S, Landthaler M (2008) Photodynamic therapy in dermatology–an update. J Dtsch Dermatol Ges 6(10):839–846

    PubMed  Google Scholar 

  • Klohs J, Wunder A, Licha K (2008) Near-Infrared fluorescent probes for imaging vascular pathophysiology. Basic Res Cardiol 103(2):144–151

    Article  PubMed  CAS  Google Scholar 

  • Krammer B, Uberriegler K (1996) In vitro investigation of ALA-induced protoporphyrin IX. J Photochem Photobiol, B 36(2):121–126

    Article  CAS  Google Scholar 

  • Kriegmair M, Baumgartner R, Knuechel R, Steinbach P, Ehsan A, Lumper W, Hofstädter F, Hofstetter A (1994) Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology 44(6):836–841

    Article  PubMed  CAS  Google Scholar 

  • Law B, Curino A, Bugge TH, Weissleder R, Tung CH (2004) Design, synthesis, and characterization of urokinase plasminogen-activator-sensitive near-infrared reporter. Chem Biol 11(1):99–106

    PubMed  CAS  Google Scholar 

  • Laxman B, Hall DE, Bhojani MS, Hamstra DA, Chenevert TL, Ross BD, Rehemtulla A (2002) Noninvasive real-time imaging of apoptosis. Proc Natl Acad Sci U S A 99(26):16551–16555

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Akers WJ, Cheney PP, Edwards WB, Liang K, Culver JP, Achilefu S (2009) Complementary optical and nuclear imaging of caspase-3 activity using combined activatable and radio-labeled multimodality molecular probe. J Biomed Opt 14(4):040507

    Article  PubMed  Google Scholar 

  • Leunig A, Rick K, Stepp H, Gutmann R, Alwin G, Baumgartner R, Feyh J (1996) Fluorescence imaging and spectroscopy of 5-aminolevulinic acid induced protoporphyrin IX for the detection of neoplastic lesions in the oral cavity. Am J Surg 172(6):674–677

    Article  PubMed  CAS  Google Scholar 

  • Leveckis J, Burn JL, Brown NJ, Reed MW (1994) Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder. J Urol 152(2 Pt 1):550–553

    PubMed  CAS  Google Scholar 

  • Li X, Nakajima Y, Niwa K, Viviani VR, Ohmiya Y (2009) Enhanced red-emitting railroad worm luciferase for bioassays and bioimaging. Protein Sci Oct 28

    Google Scholar 

  • Liebert A, Wabnitz H, Obrig H, Erdmann R, Möller M, Macdonald R, Rinneberg H, Villringer A, Steinbrink J (2006) Non-invasive detection of fluorescence from exogenous chromophores in the adult human brain. Neuroimage 31(2):600–608

    Article  PubMed  CAS  Google Scholar 

  • Lloyd PG, Hardin CD, Sturek M (1999) Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol Res 48(6):401–410

    PubMed  CAS  Google Scholar 

  • Loh CS, Vernon D, MacRobert AJ, Bedwell J, Bown SG, Brown SB (1993) Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol, B 20(1):47–54

    Article  CAS  Google Scholar 

  • Makino A, Kizaka-Kondoh S, Yamahara R, Hara I, Kanzaki T, Ozeki E, Hiraoka M, Kimura S (2009) Near-infrared fluorescence tumor imaging using nanocarrier composed of poly(L-lactic acid)-block-poly(sarcosine) amphiphilic polydepsipeptide. Biomaterials 30(28):5156–5160

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular Imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580

    Article  PubMed  CAS  Google Scholar 

  • McIntyre JO, Matrisian LM (2003) Molecular imaging of proteolytic activity in cancer. J Cell Biochem 90(6):1087–1097

    Article  PubMed  CAS  Google Scholar 

  • McIntyre JO, Fingleton B, Wells KS, Piston DW, Lynch CC, Gautam S, Matrisian LM (2004) Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity. Biochem J 377(Pt 3):617–628

    PubMed  CAS  Google Scholar 

  • Michelini E, Cevenini L, Mezzanotte L, Roda A (2009) Luminescent probes and visualization of bioluminescence. Methods Mol Biol 574:1–13

    Article  PubMed  CAS  Google Scholar 

  • Miller JC, Pien HH, Sahani D, Sorensen AG, Thrall JH (2005) Imaging angiogenesis: applications and potential for drug development. J Natl Cancer Inst 97(3):172–187

    Article  PubMed  CAS  Google Scholar 

  • Miloud T, Henrich C, Hämmerling GJ (2007) Quantitative comparison of click beetle and firefly luciferases for in vivo bioluminescence imaging. J Biomed Opt 12(5):054018

    Article  PubMed  Google Scholar 

  • Morgan NY, English S, Chen W, Chernomordik V, Russo A, Smith PD, Gandjbakhche A (2005) Real time in vivo non-invasive optical imaging using near-infrared fluorescent quantum dots. Acad Radiol 12(3):313–323

    Article  PubMed  Google Scholar 

  • Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulation blood in the human retina. Circulation XXIV, 82-86

    Google Scholar 

  • Ntziachristos V, Yodh AG, Schnall M, Chance B (2000) Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A 97(6):2767–2772

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3(1):41–46

    Article  PubMed  CAS  Google Scholar 

  • Ntziachristos V, Schellenberger EA, Ripoll J, Yessayan D, Graves E, Bogdanov A Jr, Josephson L, Weissleder R (2004) Visualization of antitumor treatment by means of fluorescence molecular tomography with an annexin V-Cy5.5 conjugate. Proc Natl Acad Sci U S A 101(33):12294-12299

    Google Scholar 

  • Oh KB, Matsuoka H (2002) Rapid viability assessment of yeast cells using vital staining with 2-NBDG, a fluorescent derivative of glucose. Int J Food Microbiol 76(1–2):47–53

    Article  PubMed  CAS  Google Scholar 

  • Parungo CP, Ohnishi S, De Grand AM, Laurence RG, Soltesz EG, Colson YL, Kang PM, Mihaljevic T, Cohn LH, Frangioni JV (2004) In vivo optical imaging of pleural space drainage to lymph nodes of prognostic significance. Ann Surg Oncol 11(12):1085–1092

    Article  PubMed  Google Scholar 

  • Peterson TE, Manning HC (2009) Molecular imaging: 18F-FDG PET and a whole lot more. J Nucl Med Technol 37(3):151–161

    Article  PubMed  CAS  Google Scholar 

  • Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM (1997) 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 65(2):235–251

    Article  PubMed  CAS  Google Scholar 

  • Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5S–23S

    Article  PubMed  Google Scholar 

  • Rodrigues EB, Costa EF, Penha FM, Melo GB, Bottós J, Dib E, Furlani B, Lima VC, Maia M, Meyer CH, Höfling-Lima AL, Farah ME (2009) The use of vital dyes in ocular surgery. Surv Ophthalmol 54(5):576–617

    Article  PubMed  Google Scholar 

  • Schad H, Brechtelsbauer H, Kramer K (1977) Studies on the suitability of a cyanine dye (Viher-Test) for indicator dilution technique and its application to the measurement of pulmonary artery and aortic flow. Pflugers Arch 370(2):139–144

    Article  PubMed  CAS  Google Scholar 

  • Scherer RL, McIntyre JO, Matrisian LM (2008) Imaging matrix metalloproteinases in cancer. Cancer Metastasis Rev 27(4):679–690

    Article  PubMed  Google Scholar 

  • Schmitt CA, Lowe SW (1999) Apoptosis and therapy. J Pathol 187(1):127–137

    Article  PubMed  CAS  Google Scholar 

  • Shibata Y, Kruskal JB, Palmer MR (2007) Imaging of cerebrospinal fluid space and movement of hydrocephalus mice using near infrared fluorescence. Neurol Sci 28(2):87–92

    Article  PubMed  CAS  Google Scholar 

  • Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, Ageyeva L, Serganov A, Cai S, Balatoni J, Blasberg R, Gelovani J (2004) Molecular Imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 64(17):6101–6108

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Wendt JA, Rasmussen JC, Adams KE, Marshall MV, Sevick-Muraca EM (2008) New horizons for imaging lymphatic function. Ann N Y Acad Sci 1131:13–36

    Article  PubMed  CAS  Google Scholar 

  • Silva JN, Filipe P, Morlière P, Mazière JC, Freitas JP, Gomes MM, Santus R (2008) Photodynamic therapy: dermatology and ophthalmology as main fields of current applications in clinic. Biomed Mater Eng 18(4–5):319–327

    PubMed  CAS  Google Scholar 

  • Steinbrink J, Liebert A, Wabnitz H, Macdonald R, Obrig H, Wunder A, Bourayou R, Betz T, Klohs J, Lindauer U, Dirnagl U, Villringer A (2008) Towards noninvasive molecular fluorescence imaging of the human brain. Neurodegener Dis 5(5):296–303

    Article  PubMed  CAS  Google Scholar 

  • Stummer W, Stocker S, Novotny A, Heimann A, Sauer O, Kempski O, Plesnila N, Wietzorrek J, Reulen HJ (1998) In vitro and in vivo porphyrin accumulation by C6 glioma cells after exposure to 5-aminolevulinic acid. J Photochem Photobiol, B 45(2–3):160–169

    Article  CAS  Google Scholar 

  • Taggart DP, Choudhary B, Anastasiadis K, Abu-Omar Y, Balacumaraswami L, Pigott DW (2003) Preliminary experience with a novel intraoperative imaging technique to evaluate the patency of bypass grafts in total arterial revascularization. Ann Thorac Surg 75(3):870–873

    Article  PubMed  Google Scholar 

  • Tannous BA (2009) Gaussia luciferase reporter assay for monitoring biological processes in culture and in vivo. Nat Protoc 4(4):582–591

    Article  PubMed  CAS  Google Scholar 

  • Uhrbom L, Nerio E, Holland EC (2004) Dissecting tumor maintenance requirements using bioluminescence imaging of cell proliferation in a mouse glioma model. Nat Med 10(11):1257–1260

    Article  PubMed  CAS  Google Scholar 

  • Valentini G, D’Andrea C, Ferrari R, Pifferi A, Cubeddu R, Martinelli M, Natoli C, Ubezio P, Giavazzi R (2008) In vivo measurement of vascular modulation in experimental tumors using a fluorescent contrast agent. Photochem Photobiol 84(5):1249–1256

    Article  PubMed  CAS  Google Scholar 

  • Viola RJ, Provenzale JM, Li F, Li CY, Yuan H, Tashjian J, Dewhirst MW (2008) In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. AJR Am J Roentgenol 191(6):1779–1784

    Article  PubMed  Google Scholar 

  • von Burstin J, Eser S, Seidler B, Meining A, Bajbouj M, Mages J, Lang R, Kind AJ, Schnieke AE, Schmid RM, Schneider G, Saur D (2008) Highly sensitive detection of early-stage pancreatic cancer by multimodal near-infrared molecular imaging in living mice. Int J Cancer 123(9):2138–2147

    Article  Google Scholar 

  • Wang H, Cao F, De A, Cao Y, Contag C, Gambhir SS, Wu JC, Chen X (2009a) Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells 27(7):1548–1558

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Shao R, Wu Q, Ke S, McMurray J, Lang FF Jr, Charnsangavej C, Gelovani JG, Li C (2009b) Targeting gelatinases with a near-infrared fluorescent cyclic His-Try-Gly-Phe peptide. Mol Imaging Biol 11(6):424–433

    Article  PubMed  Google Scholar 

  • Webber J, Kessel D, Fromm D (1997) Side effects and photosensitization of human tissues after aminolevulinic acid. J Surg Res 68(1):31–37

    Article  PubMed  CAS  Google Scholar 

  • Weissleder R, Tung CH, Mahmood U, Bogdanov A Jr (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17(4):375–378

    Article  PubMed  CAS  Google Scholar 

  • Wunder A, Klohs J (2008) Optical Imaging of Vascular Pathophysiology. Basic Res Cardiol 103(2):182–190

    Article  PubMed  CAS  Google Scholar 

  • Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296(5565):151–155

    Article  PubMed  CAS  Google Scholar 

  • Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H, Inagaki N (2000) Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic beta-cells. J Biol Chem 275(29):22278–22283

    Article  PubMed  CAS  Google Scholar 

  • Yaseen MA, Yu J, Jung B, Wong MS, Anvari B (2009) Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm 6(5):1321–1332

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Bloch S, Achilefu S (2004) Polyvalent carbocyanine molecular beacons for molecular recognitions. J Am Chem Soc 126:7740–7741

    Article  PubMed  CAS  Google Scholar 

  • Ye Y, Bloch S, Kao J, Achilefu S (2005) Multivalent carbocyanine molecular probes: synthesis and applications. Bioconjugate Chem 16(1):51–61

    Article  CAS  Google Scholar 

  • Yoshioka K, Takahashi H, Homma T, Saito M, Oh KB, Nemoto Y, Matsuoka H (1996a) A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1289(1):5–9

    Article  PubMed  Google Scholar 

  • Yoshioka K, Saito M, Oh KB, Nemoto Y, Matsuoka H, Natsume M, Abe H (1996b) Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity, in Escherichia coli cells. Biosci Biotechnol Biochem 60(11):1899–1901

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Zhang Z, Blessington D, Li H, Busch TM, Madrak V, Miles J, Chance B, Glickson JD, Zheng G (2003) Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjugate Chem 14(4):709–714

    Article  CAS  Google Scholar 

  • Zhang Z, Li H, Liu Q, Zhou L, Zhang M, Luo Q, Glickson J, Chance B, Zheng G (2004) Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens Bioelectron 20(3):643–650

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, J., Wunder, A., Licha, K. (2013). Optical Imaging. In: Schober, O., Riemann, B. (eds) Molecular Imaging in Oncology. Recent Results in Cancer Research, vol 187. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10853-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10853-2_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10852-5

  • Online ISBN: 978-3-642-10853-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics