Skip to main content

Compressing Kinetic Data from Sensor Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5804))

Abstract

We introduce a framework for storing and processing kinetic data observed by sensor networks. These sensor networks generate vast quantities of data, which motivates a significant need for data compression. We are given a set of sensors, each of which continuously monitors some region of space. We are interested in the kinetic data generated by a finite set of objects moving through space, as observed by these sensors. Our model relies purely on sensor observations; it allows points to move freely and requires no advance notification of motion plans. Sensor outputs are represented as random processes, where nearby sensors may be statistically dependent. We model the local nature of sensor networks by assuming that two sensor outputs are statistically dependent only if the two sensors are among the k nearest neighbors of each other. We present an algorithm for the lossless compression of the data produced by the network. We show that, under the statistical dependence and locality assumptions of our framework, asymptotically this compression algorithm encodes the data to within a constant factor of the information-theoretic lower bound optimum dictated by the joint entropy of the system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Saunier, N., Sayed, T.: Automated analysis of road safety with video data. In: Transportation Research Record, pp. 57–64 (2007)

    Google Scholar 

  2. Mainwaring, A., Culler, D., Polastre, J., Szewczyk, R., Anderson, J.: Wireless sensor networks for habitat monitoring. In: ACM international workshop on wireless sensor networks and applications, pp. 88–97 (2002)

    Google Scholar 

  3. MIT Media Lab: The owl project, http://owlproject.media.mit.edu/

  4. Stutchbury, B.J.M., Tarof, S.A., Done, T., Gow, E., Kramer, P.M., Tautin, J., Fox, J.W., Afanasyev, V.: Tracking long-distance songbird migration by using geolocators. Science, 896 (February 2009)

    Google Scholar 

  5. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proc. of the IRE, vol. 40 (September 1952)

    Google Scholar 

  6. Rissanen, J.: Generalized Kraft inequality and arithmetic coding. IBM Jour. of Research and Dev. 20 (1976)

    Google Scholar 

  7. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory IT-23(3) (May 1977)

    Google Scholar 

  8. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Processing approximate aggregate queries in wireless sensor networks. Inf. Syst. 31(8), 770–792 (2006)

    Article  Google Scholar 

  9. Gandhi, S., Nath, S., Suri, S., Liu, J.: Gamps: Compressing multi sensor data by grouping and amplitude scaling. In: ACM SIGMOD (2009)

    Google Scholar 

  10. Cormode, G., Muthukrishnan, S., Zhuang, W.: Conquering the divide: Continuous clustering of distributed data streams. In: IEEE 23rd International Conference on Data Engineering, pp. 1036–1045 (2007)

    Google Scholar 

  11. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional monitoring. In: SODA, pp. 1076–1085 (2008)

    Google Scholar 

  12. Soroush, E., Wu, K., Pei, J.: Fast and quality-guaranteed data streaming in resource-constrained sensor networks. In: ACM Symp. on Mobile ad hoc networking and computing, pp. 391–400 (2008)

    Google Scholar 

  13. Johnen, C., Nguyen, L.H.: Self-stabilizing weight-based clustering algorithm for ad hoc sensor networks. In: Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pp. 83–94 (2006)

    Google Scholar 

  14. Nikoletseas, S., Spirakis, P.G.: Efficient sensor network design for continuous monitoring of moving objects. Theoretical Computer Science 402(1), 56–66 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Deligiannakis, A., Kotidis, Y., Roussopoulos, N.: Dissemination of compressed historical information in sensor networks. VLDB Journal 16(4), 439–461 (2007)

    Article  Google Scholar 

  16. Sadler, C.M., Martonosi, M.: Data compression algorithms for energy-constrained devices in delay tolerant networks. In: SENSYS (November 2006)

    Google Scholar 

  17. Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Processing Mag. 19(2) (March 2002)

    Google Scholar 

  18. Guitton, A., Trigoni, N., Helmer, S.: Fault-tolerant compression algorithms for sensor networks with unreliable links. Technical Report BBKCS-08-01, Birkbeck, University of London (2008)

    Google Scholar 

  19. Gupta, P., Janardan, R., Smid, M.: Fast algorithms for collision and proximity problems involving moving geometric objects. Comput. Geom. Theory Appl. 6, 371–391 (1996)

    MATH  MathSciNet  Google Scholar 

  20. Atallah, M.J.: Some dynamic computational geometry poblems. Comput. Math. Appl. 11(12), 1171–1181 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schomer, E., Theil, C.: Efficient collision detection for moving polyhedra. In: Proc. 11th Annu. ACM Sympos. Comput. Geom., pp. 51–60 (1995)

    Google Scholar 

  22. Schomer, E., Theil, C.: Subquadratic algorithms for the general collision detection problem. In: European Workshop Comput. Geom., pp. 95–101 (1996)

    Google Scholar 

  23. Basch, J., Guibas, L.J., Hershberger, J.: Data structures for mobile data. In: SODA (1997)

    Google Scholar 

  24. Kahan, S.: A model for data in motion. In: STOC 1991: Proc. of the 23rd ACM Symp. on Theory of Computing, pp. 265–277 (1991)

    Google Scholar 

  25. Agarwal, P.K., Guibas, L.J., Edelsbrunner, H., Erickson, J., Isard, M., Har-Peled, S., Hershberger, J., Jensen, C., Kavraki, L., Koehl, P., Lin, M., Manocha, D., Metaxas, D., Mirtich, B., Mount, D.M., Muthukrishnan, S., Pai, D., Sacks, E., Snoeyink, J., Suri, S., Wolefson, O.: Algorithmic issues in modeling motion. ACM Computing Surveys 34, 550–572 (2002)

    Article  Google Scholar 

  26. Guibas, L.: Kinetic data structures. In: Mehta, D., Sahni, S. (eds.) Handbook of Data Structures and App., pp. 23–1–23–18. Chapman and Hall/CRC (2004)

    Google Scholar 

  27. Babcock, B., Olston, C.: Distributed top-k monitoring. In: SIGMOD, pp. 28–39 (2003)

    Google Scholar 

  28. Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: SODA (2009)

    Google Scholar 

  29. Mount, D.M., Netanyahu, N.S., Piatko, C., Silverman, R., Wu, A.Y.: A computational framework for incremental motion. In: Proc. 20th Annu. ACM Sympos. Comput. Geom., pp. 200–209 (2004)

    Google Scholar 

  30. Gandhi, S., Kumar, R., Suri, S.: Target counting under minimal sensing: Complexity and approximations. In: Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors), pp. 30–42 (2008)

    Google Scholar 

  31. Shannon, C.E.: A mathematical theory of communication. The Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  32. Krauthgamer, R., Lee, J.R.: Navigating nets: Simple algorithms for proximity search. In: SODA (2004)

    Google Scholar 

  33. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-IEEE (2006)

    Google Scholar 

  34. Friedler, S.A., Mount, D.M.: Compressing kinetic data from sensor networks. Technical Report CS-TR-4941, UMIACS-TR-2009-10, University of Maryland, College Park (2009)

    Google Scholar 

  35. Wyner, A.D., Ziv, J.: The sliding-window lempel-ziv algorithm is asymptotically optimal. In: Proceedings of the IEEE, June 1994, pp. 872–877 (1994)

    Google Scholar 

  36. Wren, C.R., Ivanov, Y.A., Leigh, D., Westbues, J.: The MERL motion detector dataset: 2007 workshop on massive datasets. Technical Report TR2007-069, Mitsubishi Electric Research Laboratories, Cambridge, MA, USA (August 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friedler, S.A., Mount, D.M. (2009). Compressing Kinetic Data from Sensor Networks. In: Dolev, S. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2009. Lecture Notes in Computer Science, vol 5804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05434-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05434-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05433-4

  • Online ISBN: 978-3-642-05434-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics