Skip to main content

Nature Inspired Multi-Swarm Heuristics for Multi-Knowledge Extraction

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 263))

Abstract

Multi-knowledge extraction is significant for many real-world applications. The nature inspired population-based reduction approaches are attractive to find multiple reducts in the decision systems, which could be applied to generate multi-knowledge and to improve decision accuracy. In this Chapter, we introduce two nature inspired population-based computational optimization techniques namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) for rough set reduction and multi-knowledge extraction. A Multi-Swarm Synergetic Optimization (MSSO) algorithm is presented for rough set reduction and multi-knowledge extraction. In the MSSO approach, different individuals encodes different reducts. The proposed approach discovers the best feature combinations in an efficient way to observe the change of positive region as the particles proceed throughout the search space. We also attempt to theoretically prove that the multi-swarm synergetic optimization algorithm converges with a probability of 1 towards the global optimal. The performance of the proposed approach is evaluated and compared with Standard Particle Swarm Optimization (SPSO) and Genetic Algorithms (GA). Empirical results illustrate that the approach can be applied for multiple reduct problems and multi-knowledge extraction very effectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pawlak, Z.: Rough Sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Pawlak, Z.: Rough Sets: Present State and The Future. Foundations of Computing and Decision Sciences 18, 157–166 (1993)

    MATH  MathSciNet  Google Scholar 

  3. Pawlak, Z.: Rough Sets and Intelligent Data Analysis. Information Sciences 147, 1–12 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kusiak, A.: Rough Set Theory: A Data Mining Tool for Semiconductor Manufacturing. IEEE Transactions on Electronics Packaging Manufacturing 24, 44–50 (2001)

    Article  Google Scholar 

  5. Shang, C., Shen, Q.: Rough Feature Selection for Neural Network Based Image Classification. International Journal of Image and Graphics 2, 541–555 (2002)

    Article  Google Scholar 

  6. Tay, F.E.H.: Economic And Financial Prediction Using Rough Sets Model. European Journal of Operational Research 141, 641–659 (2002)

    Article  MATH  Google Scholar 

  7. Świniarski, R.W., Skowron, A.: Rough Set Methods in Feature Selection and Recognition. Pattern Recognition Letters 24, 833–849 (2003)

    Article  MATH  Google Scholar 

  8. Beaubouef, T., Ladner, R., Petry, F.: Rough Set Spatial Data Modeling for Data Mining. International Journal of Intelligent Systems 19, 567–584 (2004)

    Article  MATH  Google Scholar 

  9. Shen, L., Tay, F.E.H.: Tay Applying Rough Sets to Market Timing Decisions. Decision Support Systems 37, 583–597 (2004)

    Article  Google Scholar 

  10. Gupta, K.M., Moore, P.G., Aha, D.W., Pal, S.K.: Rough Set Feature Selection Methods for Case-Based Categorization of Text Documents. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 792–798. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann Publishers, San Francisco (2001)

    Google Scholar 

  12. Clerc, M., Kennedy, J.: The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space. IEEE Transactions on Evolutionary Computation 6, 58–73 (2002)

    Article  Google Scholar 

  13. Clerc, M.: Particle Swarm Optimization. ISTE Publishing Company, London (2006)

    MATH  Google Scholar 

  14. Liu, H., Abraham, A., Clerc, M.: Chaotic Dynamic Characteristics in Swarm Intelligence. Applied Soft Computing Journal 7, 1019–1026 (2007)

    Article  Google Scholar 

  15. Parsopoulos, K.E., Vrahatis, M.N.: Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1, 235–306 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Abraham, A., Guo, H., Liu, H.: Swarm Intelligence: Foundations, Perspectives and Applications. In: Nedjah, N., Mourelle, L. (eds.) Swarm Intelligent Systems. Studies in Computational Intelligence, pp. 3–25. Springer, Germany (2006)

    Chapter  Google Scholar 

  17. Salman, A., Ahmad, I., Al-Madani, S.: Particle Swarm Optimization for Task Assignment Problem. Microprocessors and Microsystems 26, 363–371 (2002)

    Article  Google Scholar 

  18. Sousa, T., Silva, A., Neves, A.: Particle Swarm Based Data Mining Algorithms for Classification Tasks. Parallel Computing 30, 767–783 (2004)

    Article  Google Scholar 

  19. Liu, B., Wang, L., Jin, Y., Tang, F., Huang, D.: Improved Particle Swarm Optimization Combined With Chaos. Chaos, Solitons and Fractals 25, 1261–1271 (2005)

    Article  MATH  Google Scholar 

  20. Schute, J.F., Groenwold, A.A.: A Study of Global Optimization Using Particle Swarms. Journal of Global Optimization 3, 103–108 (2005)

    Google Scholar 

  21. Liu, H., Abraham, A.: An Hybrid Fuzzy Variable Neighborhood Particle Swarm Optimization Algorithm for Solving Quadratic Assignment Problems. Journal of Universal Computer Science 13(7), 1032–1054 (2007)

    Google Scholar 

  22. Boussouf, M.: A Hybrid Approach to Feature Selection. In: Żytkow, J.M. (ed.) PKDD 1998. LNCS, vol. 1510, pp. 231–238. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Skowron, A., Rauszer, C.: The Discernibility Matrices and Functions in Information Systems. In: Świniarski, R.W. (ed.) Handbook of Applications and Advances of the Rough Set Theory, pp. 331–362. Kluwer Academic Publishers, Dordrecht (1992)

    Google Scholar 

  24. Zhang, J., Wang, J., Li, D., He, H., Sun, J.: A New Heuristic Reduct Algorithm Base on Rough Sets Theory. In: Dong, G., Tang, C., Wang, W. (eds.) WAIM 2003. LNCS, vol. 2762, pp. 247–253. Springer, Heidelberg (2003)

    Google Scholar 

  25. Hu, K., Diao, L., Lu, Y.-c., Shi, C.-Y.: A Heuristic Optimal Reduct Algorithm. In: Leung, K.-S., Chan, L., Meng, H. (eds.) IDEAL 2000. LNCS, vol. 1983, pp. 139–144. Springer, Heidelberg (2000)

    Google Scholar 

  26. Zhong, N., Dong, J.: Using Rough Sets with Heuristics for Feature Selection. Journal of Intelligent Information Systems 16, 199–214 (2001)

    Article  MATH  Google Scholar 

  27. Banerjee, M., Mitra, S., Anand, A.: Feature Selection Using Rough Sets. Studies in Computational Intelligence, vol. 16, pp. 3–20. Springer, Heidelberg (2006)

    Google Scholar 

  28. Wu, Q., Bell, D.: Multi-knowledge Extraction and Application. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 574–575. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Wu, Q.: Multiknowledge and Computing Network Model for Decision Making and Localisation of Robots. Thesis, University of Ulster (2005)

    Google Scholar 

  30. Wang, G.: Rough Reduction in Algebra View and Information View. International Journal of Intelligent Systems 18, 679–688 (2003)

    Article  MATH  Google Scholar 

  31. Xu, Z., Liu, Z., Yang, B., Song, W.: A Quick Attibute Reduction Algorithm with Complexity of Max(O(|C||U|),O(|C|2|U/C|)). Chinese Journal of Computers 29, 391–399 (2006)

    Google Scholar 

  32. Cristian, T.I.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  33. van den Bergh, F., Engelbrecht, A.P.: A Study of Particle Swarm Optimization Particle Trajectories. Information Sciences 176(8), 937–971 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Grosan, C., Abraham, A., Nicoara, M.: Search Optimization Using Hybrid Particle Sub-swarms and Evolutionary Algorithms. International Journal of Simulation Systems, Science & Technology 6(10), 60–79 (2005)

    Google Scholar 

  35. Jiang, C., Etorre, B.: A hybrid Method of Chaotic Particle Swarm Optimization and Linear Interior for Reactive Power Optimisation. Mathematics and Computers in Simulation 68, 57–65 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  36. Liu, H., Li, B., Ji, Y., Tong, S.: Particle Swarm Optimisation from lbest to gbest. In: Abraham, A., Baets, B.D., Koppen, M. (eds.) Applied Soft Computing Technologies: The Challenge of Complexity, pp. 537–545. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  37. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10(3), 281–295 (2006)

    Article  Google Scholar 

  38. Blackwell, T., Branke, J.: Multiswarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)

    Article  Google Scholar 

  39. Niu, B., Zhu, Y., He, X., Wu, H.: MCPSO: A Multi-Swarm Cooperative Particle Swarm Optimizer. Applied Mathematics and Computation 185(2), 1050–1062 (2007)

    Article  MATH  Google Scholar 

  40. Settles, M., Soule, T.: Breeding swarms: a GA/PSO hybrid. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 161–168 (2005)

    Google Scholar 

  41. Elshamy, W., Emara, H.M., Bahgat, A.: Clubs-based Particle Swarm Optimization. In: Proceedings of the IEEE International Conference on Swarm Intelligence Symposium, vol. 1, pp. 289–296 (2007)

    Google Scholar 

  42. Guo, C., Tang, H.: Global Convergence Properties of Evolution Stragtegies. Mathematica Numerica Sinica 23(1), 105–110 (2001)

    MathSciNet  Google Scholar 

  43. He, R., Wang, Y., Wang, Q., Zhou, J., Hu, C.: An Improved Particle Swarm Optimization Based on Self-adaptive Escape Velocity. Journal of Software 16(12), 2036–2044 (2005)

    Article  MATH  Google Scholar 

  44. Weisstein, E.W.: Borel-Cantelli Lemma, From MathWorld – A Wolfram Web Resource (2007), http://mathworld.wolfram.com/Borel-CantelliLemma.html

  45. Xu, Z., Cheng, G., Liang, Y.: Search Capability for An Algebraic Crossover. Journal of Xi’an Jiaotong University 33(10), 88–99 (1999)

    MATH  MathSciNet  Google Scholar 

  46. Whitley, L.D.: Fundamental Principles of Deception in Genetic Search. Foundation of Genetic Algorithms, pp. 221–241. Morgan Kaufmann Publishers, California (1991)

    Google Scholar 

  47. Mastrolilli, M., Gambardella, L.M.: Effective Neighborhood Functions for the Flexible Job Shop Problem. Journal of Scheduling 3(1), 3–20 (2002)

    Article  MathSciNet  Google Scholar 

  48. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  49. Goldberg, D.E.: Genetic Algorithms in search, optimization, and machine learning. Addison-Wesley Publishing Corporation, Inc., Reading (1989)

    MATH  Google Scholar 

  50. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms. Kluwer Academic Publishers, Netherland (2000)

    MATH  Google Scholar 

  51. Abraham, A.: Evolutionary Computation. In: Sydenham, P., Thorn, R. (eds.) Handbook for Measurement Systems Design, pp. 920–931. John Wiley and Sons Ltd., London (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liu, H., Abraham, A., Yue, B. (2010). Nature Inspired Multi-Swarm Heuristics for Multi-Knowledge Extraction. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning II. Studies in Computational Intelligence, vol 263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05179-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05179-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05178-4

  • Online ISBN: 978-3-642-05179-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics