Skip to main content

Bridging the Gap between High-Level Reasoning and Low-Level Control

  • Conference paper
Logic Programming and Nonmonotonic Reasoning (LPNMR 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5753))

Abstract

We present a formal framework where a nonmonotonic formalism (the action description language \({\cal C}+\)) is used to provide robots with high-level reasoning, such as planning, in the style of cognitive robotics. In particular, we introduce a novel method that bridges the high-level discrete action planning and the low-level continuous behavior by trajectory planning. We show the applicability of this framework on two LEGO MINDSTORMS NXT robots, in an action domain that involves concurrent execution of actions that cannot be serialized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levesque, H., Lakemeyer, G.: Cognitive robotics. In: Handbook of Knowledge Representation. Elsevier, Amsterdam (2007)

    Google Scholar 

  2. Levesque, H.J., Pagnucco, M.: Legolog: Inexpensive experiments in cognitive robotics. In: Proc. of CogRob, pp. 104–109 (2000)

    Google Scholar 

  3. Levesque, H.J., Reiter, R., Lin, F., Scherl, R.B.: GOLOG: A logic programming language for dynamic domains. JLP 31 (1997)

    Google Scholar 

  4. McCarthy, J.: Situations, actions, and causal laws. Technical report, Stanford University (1963)

    Google Scholar 

  5. Levesque, H.J., Pirri, F., Reiter, R.: Foundations for the situation calculus. ETAI 2, 159–178 (1998)

    Google Scholar 

  6. Hähnel, D., Burgard, W., Lakemeyer, G.: GOLEX - bridging the gap between logic (GOLOG) and a real robot. In: Herzog, O. (ed.) KI 1998. LNCS, vol. 1504, pp. 165–176. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Ferrein, A., Fritz, C., Lakemeyer, G.: Using GOLOG for deliberation and team coordination in robotic soccer. Künstliche Intelligenz 1 (2005)

    Google Scholar 

  8. Doherty, P., Gustafsson, J., Karlsson, L., Kvarnström, J.: Tal: Temporal action logics language specification and tutorial. ETAI 2, 273–306 (1998)

    MathSciNet  Google Scholar 

  9. Sandewall, E.: Features and Fluents: A Systematic Approach to the Representation of Knowledge about Dynamical Systems. Oxford University Press, Oxford (1994)

    MATH  Google Scholar 

  10. Sandewall, E.: Cognitive robotics logic and its metatheory: Features and fluents revisited. ETAI 2, 307–329 (1998)

    MathSciNet  Google Scholar 

  11. Doherty, P., Granlund, G., Kuchcinski, K., Sandewall, E., Nordberg, K., Skarman, E., Wiklund, J.: The WITAS unmanned aerial vehicle project. In: Proc. of ECAI, pp. 747–755 (2000)

    Google Scholar 

  12. Shanahan, M., Witkowski, M.: High-level robot control through logic. In: Castelfranchi, C., Lespérance, Y. (eds.) ATAL 2000. LNCS (LNAI), vol. 1986, pp. 104–121. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95 (1986)

    Article  MATH  Google Scholar 

  14. Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axiomatisations. ETAI 3(A), 77–105 (1999)

    MathSciNet  Google Scholar 

  15. Thielscher, M.: FLUX: A logic programming method for reasoning agents. TPLP 5(4-5), 533–565 (2005)

    MATH  Google Scholar 

  16. Thielscher, M.: Introduction to the fluent calculus. ETAI 2, 179–192 (1998)

    MathSciNet  Google Scholar 

  17. Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic environments. In: Proc. of Workshop on Issues in Designing Physical Agents for Dynamic Real-Time Environments: World modeling, planning, learning, and communicating, Acapulco, Mexico (2003)

    Google Scholar 

  18. Giunchiglia, E., Lifschitz, J.L.V.: Nonmonotonic causal theories. AIJ 153 (2004)

    Google Scholar 

  19. Gelfond, M., Lifschitz, V.: Action languages. ETAI 2, 193–210 (1998)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V. (2009). Bridging the Gap between High-Level Reasoning and Low-Level Control. In: Erdem, E., Lin, F., Schaub, T. (eds) Logic Programming and Nonmonotonic Reasoning. LPNMR 2009. Lecture Notes in Computer Science(), vol 5753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04238-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04238-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04237-9

  • Online ISBN: 978-3-642-04238-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics