Skip to main content

Abstract

Raman spectroscopy can offer a non-invasive, information-rich biochemical “snapshot” of living human cells, tissues or material-cell tissue constructs rapidly(seconds–minutes), without the need of labels or contrast enhancers. This chapter details the exciting potential and challenges associated with the use of Raman spectroscopy in tissue engineering (TE). The use of Raman spectroscopy in three interlinked areas of TE will be considered: (1) the characterisation of the various scaffolds and “smart” materials, (2) the biochemical analysis of cellular behaviour important in TE (e.g. differentiation) and (3) the use of Raman spectroscopy for the analysis of tissue/extracellular matrix (ECM) formation in vitro or possibly in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.M. Stevens, J.H. George, Science 310, 1135 (2005)

    Article  ADS  Google Scholar 

  2. H. Shin, S. Jo, A.G. Mikos, Biomaterials 24, 4353 (2003)

    Article  Google Scholar 

  3. R.J. Swain, Non-invasive biochemical analysis of cells, tissues and tissue constructs with Raman spectroscopy. PhD Thesis, Imperial College, London, 2008

    Google Scholar 

  4. I. Notingher, G. Jell, P.L. Notingher, I. Bisson, O. Tsigkou, J.M. Polak, M.M. Stevens, L.L. Hench, J. Mol. Struct. 744–747, 179 (2005)

    Article  Google Scholar 

  5. J.W. Dobrucki, D. Feret, A. Noatynska, Biophys. J. 93, 1778 (2007)

    Article  ADS  Google Scholar 

  6. K. Faulds, R.P. Barbagallo, J.T. Keer, W.E. Smith, D. Graham, Analyst 129, 567 (2004)

    Article  ADS  Google Scholar 

  7. A.D. Meade, F.M. Lyng, P. Knief, H.J. Byrne, Anal. Bioanal. Chem. 387, 1717 (2007)

    Article  Google Scholar 

  8. C. Krafft, D. Codrich, G. Pelizzo, V. Sergo, Analyst 133, 361 (2008)

    Article  ADS  Google Scholar 

  9. A. Boskey, C.N. Pleshko, Biomaterials 28, 2465 (2007)

    Article  Google Scholar 

  10. C. Delogne, P.V. Lawford, S.M. Habesch, V.A. Carolan, J. Microsc. 228, 62 (2007)

    Article  MathSciNet  Google Scholar 

  11. H.J. van Manen, Y.M. Kraan, D. Roos, C. Otto, J. Phys. Chem. B 108, 18762 (2004)

    Article  Google Scholar 

  12. S.O. Konorov, C.H. Glover, J.M. Piret, J. Bryan, H.G. Schulze, M.W. Blades, R.F. Turner, Anal. Chem. 79, 7221 (2007)

    Article  Google Scholar 

  13. D. Naumann, in Infrared and Raman Spectroscopy of Biological Materials, ed. by H.-U. Gremlich, B. Yan (Marcel Dekker, New York, 2001), p. 323

    Google Scholar 

  14. P.R. Carey, Q. Rev. Biophys. 11, 309 (1978)

    Article  Google Scholar 

  15. A.G. Ryder, Curr. Opin. Chem. Biol. 9, 489 (2005)

    Article  Google Scholar 

  16. L.G. Rodriguez, S.J. Lockett, G.R. Holtom, Cytometry A 69, 779 (2006)

    Google Scholar 

  17. A.S. Curtis, M. Varde, J. Natl. Cancer Inst. 33, 15 (1964)

    Google Scholar 

  18. M.J. Dalby, N. Gadegaard, R. Tare, A. Andar, M.O. Riehle, P. Herzyk, C.D. Wilkinson, R.O. Oreffo, Nat. Mater. 6, 997 (2007)

    Article  ADS  Google Scholar 

  19. A. Bertoluzza, C. Fagnano, P. Monti, R. Simoni, A. Tinti, M.R. Tosi, R. Caramazza, Clin. Mater. 9, 49 (1992)

    Article  Google Scholar 

  20. J.J. Blaker, J.E. Gough, V. Maquet, I. Notingher, A.R. Boccaccini, J. Biomed. Mater. Res. A 67, 1401 (2003)

    Article  Google Scholar 

  21. T. Van Sr., A. Mens, C.F. van Nostrum, W.E. Hennink, Biomacromolecules 9, 158 (2008)

    Article  Google Scholar 

  22. M.H. Chowdhury, V.A. Gant, A. Trache, A. Baldwin, G.A. Meininger, G.L. Cote, J. Biomed. Opt. 11, 024004 (2006)

    Article  ADS  Google Scholar 

  23. R.M. Jarvis, E.W. Blanch, A.P. Golovanov, J. Screen, R. Goodacre, Analyst 132, 1053 (2007)

    Article  ADS  Google Scholar 

  24. G.M. Walsh, D. Leane, N. Moran, T.E. Keyes, R.J. Forster, D. Kenny, S. O’Neill, Biochemistry 46, 6429 (2007)

    Article  Google Scholar 

  25. S. Keren, C. Zavaleta, Z. Cheng, Z.A. de la, O. Gheysens, S.S. Gambhir, Proc. Natl. Acad. Sci. U S A 105, 5844 (2008)

    Article  ADS  Google Scholar 

  26. Z. Liu, C. Davis, W. Cai, L. He, X. Chen, H. Dai, Proc. Natl. Acad. Sci. U S A 105, 1410 (2008)

    Article  ADS  Google Scholar 

  27. A. Carden, M.D. Morris, J. Biomed. Opt. 5, 259 (2000)

    Article  ADS  Google Scholar 

  28. W.L. Rice, S. Firdous, S. Gupta, M. Hunter, C.W. Foo, Y. Wang, H.J. Kim, D.L. Kaplan, I. Georgakoudi, Biomaterials 29, 2015 (2008)

    Article  Google Scholar 

  29. S.T. Nandagawali, J.S. Yerramshetty, O. Akkus, J. Biomed. Mater. Res. A 82, 611 (2007)

    Google Scholar 

  30. A.A. van Apeldoorn, H.J. van Manen, J.M. Bezemer, J.D. de Bruijn, C.A. van Blitterswijk, C. Otto, J. Am. Chem. Soc. 126, 13226 (2004)

    Article  Google Scholar 

  31. I. Notingher, S. Verrier, S. Haque, J.M. Polak, L.L. Hench, Biopolymers 72, 230 (2003)

    Article  Google Scholar 

  32. I. Notingher, C. Green, C. Dyer, E. Perkins, N. Hopkins, C. Lindsay, L.L. Hench, J. R. Soc. Interface 1, 79 (2004)

    Article  Google Scholar 

  33. C.A. Owen, J. Selvakumaran, I. Notingher, G. Jell, L.L. Hench, M.M. Stevens, J. Cell Biochem. 99, 178 (2006)

    Google Scholar 

  34. K.W. Short, S. Carpenter, J.P. Freyer, J.R. Mourant, Biophys. J. 88, 4274 (2005)

    Article  Google Scholar 

  35. C. Matthäus, S. Boydston-White, M. Miljkovic, M. Romeo, M. Diem, Appl. Spectrosc. 60, 1 (2006)

    Article  ADS  Google Scholar 

  36. R.J. Swain, G. Jell, M.M. Stevens, J. Cell Biochem. 104, 1427 (2008)

    Google Scholar 

  37. I. Notingher, I. Bisson, A.E. Bishop, W.L. Randle, J.M. Polak, L.L. Hench, Anal. Chem. 76, 3185 (2004)

    Article  Google Scholar 

  38. G. Jell, I. Notingher, O. Tsigkou, P. Notingher, J.M. Polak, L.L. Hench, M.M. Stevens, J. Biomed. Mater. Res. A 86, 31 (2008)

    Google Scholar 

  39. R.J. Swain, S.J. Kemp, P. Goldstraw, T.D. Tetley, M.M. Stevens, Biophys. J. 95, 5978–5987 (2008)

    Article  ADS  Google Scholar 

  40. J.E. Gough, I. Notingher, L.L. Hench, J. Biomed. Mater. Res. A 68, 640 (2004)

    Article  Google Scholar 

  41. J.R. Jones, A. Vats, I. Notingher, J.E. Gough, N.S. Tolley, J.M. Polak, L.L. Hench, Key Eng. Mater. 623 {284–286}, (2005)

    Google Scholar 

  42. I. Notingher, G. Jell, U. Lohbauer, V. Salih, L.L. Hench, J. Cell Biochem. 92, 1180 (2004)

    Google Scholar 

  43. P. Crow, B. Barrass, C. Kendall, M. Hart-Prieto, M. Wright, R. Persad, N. Stone, Br. J. Cancer 92, 2166 (2005)

    Article  Google Scholar 

  44. P.J. Caspers, G.W. Lucassen, G.J. Puppels, Biophys. J. 85, 572 (2003)

    Article  ADS  Google Scholar 

  45. A. Tfayli, O. Piot, F. Draux, F. Pitre, M. Manfait, Biopolymers 87, 261 (2007)

    Article  Google Scholar 

  46. C. Krafft, S.B. Sobottka, G. Schackert, R. Salzer, Analyst 130, 1070 (2005)

    Article  ADS  Google Scholar 

  47. S. Koljenovic, T.C. Bakker Schut, J.P. van Meerbeeck, A.P. Maat, S.A. Burgers, P.E. Zondervan, J.M. Kros, G.J. Puppels, J. Biomed. Opt. 9, 1187 (2004)

    Article  ADS  Google Scholar 

  48. M.A. Short, S. Lam, A. McWilliams, J. Zhao, H. Lui, H. Zeng, Opt. Lett. 33, 711 (2008)

    Article  ADS  Google Scholar 

  49. C. Krafft, R. Salzer, G. Soff, M. Meyer-Hermann, Cytometry A 64, 53 (2005)

    Google Scholar 

  50. H. Wang, Y. Fu, P. Zickmund, R. Shi, J.X. Cheng, Biophys. J. 89, 581 (2005)

    Article  Google Scholar 

  51. M. Heger, S. Mordon, G. Leroy, L. Fleurisse, C. Creusy, J. Biomed. Opt. 11, 024003 (2006)

    Article  ADS  Google Scholar 

  52. E.R. Draper, M.D. Morris, N.P. Camacho, P. Matousek, M. Towrie, A.W. Parker, A.E. Goodship, J. Bone Miner. Res. 20, 1968 (2005)

    Article  Google Scholar 

  53. M.V. Schulmerich, J.H. Cole, K.A. Dooley, M.D. Morris, J.M. Kreider, S.A. Goldstein, S. Srinivasan, B.W. Pogue, J. Biomed. Opt. 13, 020506 (2008)

    Article  ADS  Google Scholar 

  54. M.R. Towler, A. Wren, N. Rushe, J. Saunders, N.M. Cummins, P.M. Jakeman, J. Mater. Sci. Mater. Med. 18, 759 (2007)

    Article  Google Scholar 

  55. A.A. van Apeldoorn, Y. Aksenov, M. Stigter, I. Hofland, J.D. de Bruijn, H.K. Koerten, C. Otto, J. Greve, C.A. van Blitterswijk, J. R. Soc. Interface. 2, 39 (2005)

    Article  Google Scholar 

  56. B.R. McCreadie, M.D. Morris, T.C. Chen, R.D. Sudhaker, W.F. Finney, E. Widjaja, S.A. Goldstein, Bone 39, 1190 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin Jell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jell, G., Swain, R., M. Stevens, M. (2010). Raman Spectroscopy: A Tool for Tissue Engineering. In: Matousek, P., Morris, M. (eds) Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02649-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02649-2_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02648-5

  • Online ISBN: 978-3-642-02649-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics