Skip to main content

DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting

  • Conference paper
Information Processing in Medical Imaging (IPMI 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5636))

Included in the following conference series:

Abstract

A general-purpose deformable registration algorithm referred to as ”DRAMMS” is presented in this paper. DRAMMS adds to the literature of registration methods that bridge between the traditional voxel-wise methods and landmark/feature-based methods. In particular, DRAMMS extracts Gabor attributes at each voxel and selects the optimal components, so that they form a highly distinctive morphological signature reflecting the anatomical context around each voxel in a multi-scale and multi-resolution fashion. Compared with intensity or mutual-information based methods, the high-dimensional optimal Gabor attributes render different anatomical regions relatively distinctively identifiable and therefore help establish more accurate and reliable correspondence. Moreover, the optimal Gabor attribute vector is constructed in a way that generalizes well, i.e., it can be applied to different registration tasks, regardless of the image contents under registration. A second characteristic of DRAMMS is that it is based on a cost function that weights different voxel pairs according to a metric referred to as ”mutual-saliency”, which reflects the uniqueness (reliability) of anatomical correspondences implied by the tentative transformation. As a result, image voxels do not contribute equally to the optimization process, as in most voxel-wise methods, or in a binary selection fashion, as in most landmark/feature-based methods. Instead, they contribute according to a continuously-valued mutual-saliency map, which is dynamically updated during the algorithm’s evolution. The general applicability and accuracy of DRAMMS are demonstrated by experiments in simulated images, inter-subject images, single-/multi-modality images, and longitudinal images, from human and mouse brains, breast, heart, and prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Glocker, B., et al.: Dense image registration through MRFs and efficient linear programming. Medical Image Analysis 12(6), 731–741 (2008)

    Article  Google Scholar 

  2. Vercauteren, T., et al.: Non-parametric Diffeomorphic Image Registration with the Demons Algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part II. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Christensen, G.E., Rabbitt, R.D., Miller, M.I.: 3D brain mapping using a deformable neuroanatomy. Phys. Medicine Biol. 39, 609–618 (1994)

    Article  Google Scholar 

  4. Collins, D.L., et al.: Automatic 3D intersubject registration on MR volumetric data in standardized talairach space. J. Comput. Assist. Tomogr. 18(2), 192–205 (1994)

    Article  Google Scholar 

  5. Thirion, J.-P.: Image matching as a diffusion process: An analogy with maxwells demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  6. Rueckert, D., et al.: Nonrigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Med. Imag. 18(8), 712–721 (1999)

    Article  Google Scholar 

  7. Wells III, W.M., et al.: Multi-modal volume registration by maximization of mutual information. Medical Image Analysis 1(1), 35–51 (1996)

    Article  Google Scholar 

  8. Davatzikos, C., Prince, J.L., Bryan, R.N.: Image registration based on boundary mapping. IEEE Trans. on Med. Imag. 15(1), 112–115 (1996)

    Article  Google Scholar 

  9. Thompson, P., Toga, A.: Anatomically-driven strategies for high-dimensional brain image warping and pathology detection. Brain Warping, 311–336 (1998)

    Google Scholar 

  10. Rohr, K., et al.: Landmark-based elastic registration using approximating thin-plate splines. IEEE Trans. Med. Imaging 20(6), 526–534 (2001)

    Article  Google Scholar 

  11. Shen, D., Davatzikos, C.: HAMMER: Hierarchical Attribute Matching Mechanism for Elastic Registration. IEEE Trans. Med. Imaging 21(11), 1421–1439 (2002)

    Article  Google Scholar 

  12. Joshi, S.C., Miller, M.I.: Landmark matching via large deformation diffeomorphisms. IEEE Trans. Image Processing 9, 1357–1370 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Computer Vision Image Understanding 89, 114–141 (2003)

    Article  MATH  Google Scholar 

  14. Zhan, Y., et al.: Registering Histologic and MR Images of Prostate for Image-based Cancer Detection. Academic Radiology 14(11), 1367–1381 (2007)

    Article  Google Scholar 

  15. Xue, Z., Shen, D., Davatzikos, C.: Determining correspondence in 3-D MR brain images using attribute vectors as morphological signatures of voxels. IEEE Trans. Med. Imag. 23(10), 1276–1291 (2004)

    Article  Google Scholar 

  16. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vision 2, 283–310 (1989)

    Article  Google Scholar 

  17. McEachen II, J.C., Duncan, J.: Shape-Based Tracking of Left Ventricular Wall Motion. IEEE Trans. Med. Imaging 16(3), 270–283 (1997)

    Article  Google Scholar 

  18. Wu, G., Qi, F., Shen, D.: Learning Best Features and Deformation Statistics for Hierarchical Registration of MR Brain Images. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 160–171. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Bookstein, F.L.: Principal warps: Thin-Plate splines and the decomposition of deformations. IEEE Trans. Pattern Anal. Mach. Intell. 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  20. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE 67(5), 786–804 (1979)

    Article  Google Scholar 

  21. Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. Pattern Recognition 24(12), 1167–1186 (1991)

    Article  Google Scholar 

  22. Zhang, J., Liu, Y.: Cervical Cancer Detection Using SVM Based Feature Screening. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 873–880. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  23. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Anal. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  24. Zhan, Y., Shen, D.: Deformable Segmentation of 3D Ultrasound Prostate Images Using Statistical Texture Matching Method. IEEE TMI 25, 256–272 (2006)

    Google Scholar 

  25. Liu, J., Vemuri, B.C., Marroquin, J.L.: Local frequency representations for robust multimodal image registration. IEEE Trans. on Med. Imag. 21, 462–469 (2002)

    Article  MATH  Google Scholar 

  26. Verma, R., Davatzikos, C.: Matching of Diffusion Tensor Images using Gabor Features. In: ISBI, pp. 396–399 (2004)

    Google Scholar 

  27. Elbakary, M., Sundareshan, M.K.: Accurate representation of local frequency using a computationally efficient Gabor filter fusion approach with application to image registration. Pattern Recognition Letters 26(14), 2164–2173 (2005)

    Article  Google Scholar 

  28. Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. Comput. Vision 45(2), 83–105 (2001)

    Article  MATH  Google Scholar 

  29. Fan, Y., et al.: COMPARE: Classification of Morphological Patterns Using Adaptive Regional Elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)

    Article  MathSciNet  Google Scholar 

  30. Wu, G., Qi, F., Shen, D.: Learning-based deformable registration of MR brain images. IEEE Trans. Med. Imaging 25(9), 1145–1157 (2006)

    Article  Google Scholar 

  31. Mahapatra, D., Sun, Y.: Registration of dynamic renal MR images using neurobiological model of saliency. IEEE ISBI, 1119–1122 (2008)

    Google Scholar 

  32. McAuliffe, M., et al.: Medical image processing, analysis and visualization in clinical research. In: Proc. 14th IEEE Comp. Based Med. Sys., pp. 381–386 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ou, Y., Davatzikos, C. (2009). DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting. In: Prince, J.L., Pham, D.L., Myers, K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02498-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02498-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02497-9

  • Online ISBN: 978-3-642-02498-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics