Skip to main content

Protein Fragment Swapping: A Method for Asymmetric, Selective Site-Directed Recombination

  • Conference paper
  • 1591 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5541))

Abstract

This paper presents a new approach to site-directed recombination, swapping combinations of selected discontiguous fragments from a source protein in place of corresponding fragments of a target protein. By being both asymmetric (differentiating source and target) and selective (swapping discontiguous fragments), our method focuses experimental effort on a more restricted portion of sequence space, constructing hybrids that are more likely to have the properties that are the objective of the experiment. Furthermore, since the source and target need to be structurally homologous only locally (rather than overall), our method supports swapping fragments from functionally important regions of a source into a target “scaffold”; e.g., to humanize an exogenous therapeutic protein. A protein fragment swapping plan is defined by the residue position boundaries of the fragments to be swapped; it is assessed by an average potential score over the resulting hybrid library, with singleton and pairwise terms evaluating the importance and fit of the swapped residues. While we prove that it is NP-hard to choose an optimal set of fragments under such a potential score, we develop an integer programming approach, which we call Swagmer, that works very well in practice. We demonstrate the effectiveness of our method in two types of swapping problem: selective recombination between beta-lactamases and activity swapping between glutathione transferases. We show that the selective recombination approach generates a better plan (in terms of resulting potential score) than a traditional site-directed recombination approach. We also show that in both cases the optimized experiment is significantly better than one that would result from stochastic methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stemmer, W.: Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994)

    Article  CAS  PubMed  Google Scholar 

  2. Ostermeier, M., Shim, J., Benkovic, S.: A combinatorial approach to hybrid enzymes independent of DNA homology. Nat. Biotechnol. 17, 1205–1209 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. Lutz, S., Ostermeier, M., Moore, G., Maranas, C., Benkovic, S.: Creating multiple-crossover DNA libraries independent of sequence identity. PNAS 98, 11248–11253 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Voigt, C., Martinez, C., Wang, Z., Mayo, S., Arnold, F.: Protein building blocks preserved by recombination. Nat. Struct. Biol. 9, 553–558 (2002)

    CAS  PubMed  Google Scholar 

  5. O’Maille, P., Bakhtina, M., Tsai, M.: Structure-based combinatorial protein engineering (SCOPE). J. Mol. Biol. 321, 677–691 (2002)

    Article  PubMed  Google Scholar 

  6. Aguinaldo, A., Arnold, F.: Staggered extension process (StEP) in vitro recombination. Methods Mol. Biol. 231, 105–110 (2003)

    CAS  PubMed  Google Scholar 

  7. Coco, W.: RACHITT: Gene family shuffling by random chimeragenesis on transient templates. Methods Mol. Biol. 231, 111–127 (2003)

    CAS  PubMed  Google Scholar 

  8. Otey, C., Silberg, J., Voigt, C., Endelman, J., Bandara, G., Arnold, F.: Functional evolution and structural conservation in chimeric cytochromes P450: calibrating a structure-guided approach. Chem. Biol. 11, 309–318 (2004)

    Article  CAS  PubMed  Google Scholar 

  9. Castle, L., Siehl, D., Gorton, R., Patten, P., Chen, Y., Bertain, S., Cho, H.J., Duck, N., Wong, J., Liu, D., Lassner, M.: Discovery and directed evolution of a glyphosate tolerance gene. Science 304, 1151–1154 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. Griswold, K., Kawarasaki, Y., Ghoneim, N., Benkovic, S., Iverson, B., Georgiou, G.: Evolution of highly active enzymes by homology-independent recombination. PNAS 102, 10082–10087 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Griswold, K., Aiyappan, N., Iverson, B., Georgioiu, G.: The evolution of catalytic efficiency and substrate promiscuity in human theta class 1-1 glutathione transferase. J. Mol. Biol. 364, 400–410 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Taly, V., Urban, P., Truan, G., Pompon, D.: A combinatorial approach to substrate discrimination in the P450 CYP1A subfamily. Biochim. Biophys. Acta 1770, 446–457 (2006)

    Article  PubMed  Google Scholar 

  13. Kurtovic, S., Modén, O., Shokeer, A., Mannervik, B.: Structural determinanats of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members. J. Mol. Biol. 375, 1365–1379 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Morrison, S., Johnson, M., Herzenberg, L., Oi, V.: Chimeric human antibody molecules: Mouse antigen-binding domains with human constant region domains. PNAS 81, 6851–6855 (1984)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jones, P., Dear, P., Foote, J., Neuberger, M., Winter, G.: Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986)

    Article  CAS  PubMed  Google Scholar 

  16. Meyer, M., Silberg, J., Voigt, C., Endelman, J., Mayo, S., Wang, Z., Arnold, F.: Library analysis of SCHEMA-guided protein recombination. Protein Sci. 12, 1686–1693 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moore, G., Maranas, C.: Identifying residue-residue clashes in protein hybrids by using a second-order mean-field approach. PNAS 100, 5091–5096 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Saraf, M., Horswill, A., Benkovic, S., Maranas, C.: Famclash: A method for ranking the activity of engineered enzymes. PNAS 12, 4142–4147 (2004)

    Article  Google Scholar 

  19. Saftalov, L., Smith, P., Friedman, A., Bailey-Kellogg, C.: Site-directed combinatorial construction of chimaeric genes: general method for optimizing assembly of gene fragments. Proteins 64, 629–642 (2006)

    Article  CAS  PubMed  Google Scholar 

  20. Avramova, L., Desai, J., Weaver, S., Friedman, A., Bailey-Kellogg, C.: Robotic hierarchical mixing for the production of combinatorial libraries of proteins and small molecules. J. Comb. Chem. 10, 63–68 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Otey, C., Landwehr, M., Endelman, J., Hiraga, K., Bloom, J., Arnold, F.: Structure-guided recombination creates an artificial family of cytochromes P450. PLoS Biol. 4, e112 (2006)

    Article  Google Scholar 

  22. Holm, L., Sander, C.: Protein structure comparison by alignment of distance matrices. J. Mol. Biol. 233, 123–138 (1993)

    Article  CAS  PubMed  Google Scholar 

  23. Shindyalov, J., Bourne, P.: Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng. 11, 739–747 (1998)

    Article  CAS  PubMed  Google Scholar 

  24. Ye, Y., Godzik, A.: Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics (suppl. 2), ii246–ii255 (2003)

    Google Scholar 

  25. Nussinov, R., Wolfson, H.: Efficient detection of three-dimensional motifs in biological macromolecules by computer vision techniques. PNAS 88, 10495–10499 (1992)

    Article  Google Scholar 

  26. Saraf, M., Gupta, A., Maranas, C.: Design of combinatorial protein libraries of optimal size. Proteins 60, 769–777 (2005)

    Article  CAS  PubMed  Google Scholar 

  27. Russ, W., Lowery, D., Mishra, P., Yaffee, M., Ranganathan, R.: Natural-like function in artificial WW domains. Nature 437, 579–583 (2005)

    Article  CAS  PubMed  Google Scholar 

  28. Socolich, M., Lockless, S., Russ, W., Lee, H., Gardner, K., Ranganathan, R.: Evolutionary information for specifying a protein fold. Nature 437, 512–518 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Ye, X., Friedman, A., Bailey-Kellogg, C.: Hypergraph model of multi-residue interactions in proteins: sequentially-constrained partitioning algorithms for optimization of site-directed protein recombination. J. Comput. Biol. 14, 777–790 (2007); Conference version: Proc. RECOMB, pp. 15–29 (2006)

    Article  CAS  PubMed  Google Scholar 

  30. Thomas, J., Ramakrishnan, N., Bailey-Kellogg, C.: Graphical models of residue coupling in protein families. IEEE/ACM Trans. Comput. Biol. Bioinf. 5, 183–197 (2008)

    Article  CAS  Google Scholar 

  31. Tanaka, S., Scheraga, H.: Medium and long range interaction parameters between amino acids for predicting three dimensional strutures of proteins. Macromolecules 9, 945–950 (1976)

    Article  CAS  PubMed  Google Scholar 

  32. Miyazawa, S., Jernigan, R.: Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation. Macromolecules 18, 531–552 (1985)

    Article  Google Scholar 

  33. Bowie, J., Luthy, R., Eisenberg, D.: A method to identify protein sequences that fold into a known three-dimensional structure. Science 253, 164–170 (1991)

    Article  CAS  PubMed  Google Scholar 

  34. Jones, D., Taylor, W., Thornton, J.: A new approach to protein fold recognition. Nature 358, 86–89 (1992)

    Article  CAS  PubMed  Google Scholar 

  35. Lathrop, R., Smith, T.: Global optimum protein threading with gapped alignment and empirical pair score functions. J. Mol. Biol. 255, 651–665 (1996)

    Article  Google Scholar 

  36. Godzik, A.: Fold recognition methods. Methods Biochem. Anal. 44, 525–546 (2003)

    CAS  PubMed  Google Scholar 

  37. Lathrop, R.: The protein threading problem with sequence amino acid interaction preferences is NP-complete. Protein Eng. 7, 1059–1068 (1994)

    Article  CAS  PubMed  Google Scholar 

  38. Xu, J., Li, M., Kim, D., Xu, Y.: RAPTOR: Optimal protein threading by linear programming. J. Bioinf. Comp. Biol. 1, 95–117 (2003)

    Article  CAS  Google Scholar 

  39. Zheng, W., Friedman, A., Bailey-Kellogg, C.: Algorithms for joint optimization of stability and diversity in planning combinatorial libraries of chimeric proteins. In: Vingron, M., Wong, L. (eds.) RECOMB 2008. LNCS (LNBI), vol. 4955, pp. 300–314. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, W., Griswold, K.E., Bailey-Kellogg, C. (2009). Protein Fragment Swapping: A Method for Asymmetric, Selective Site-Directed Recombination. In: Batzoglou, S. (eds) Research in Computational Molecular Biology. RECOMB 2009. Lecture Notes in Computer Science(), vol 5541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02008-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02008-7_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02007-0

  • Online ISBN: 978-3-642-02008-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics