Skip to main content

Real and Modeled Spike Trains: Where Do They Meet?

  • Conference paper
Book cover Artificial Neural Networks - ICANN 2008 (ICANN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5164))

Included in the following conference series:

  • 2416 Accesses

Abstract

Spike train models are important for the development and calibration of data analysis methods and for the quantification of certain properties of the data. We study here the properties of a spike train model that can produce both oscillatory and non-oscillatory spike trains, faithfully reproducing the firing statistics of the original spiking data being modeled. Furthermore, using data recorded from cat visual cortex, we show that despite the fact that firing statistics are reproduced, the dynamics of the modeled spike trains are significantly different from their biological counterparts. We conclude that spike train models are difficult to use when studying collective dynamics of neurons and that there is no universal ’recipe’ for modeling cortical firing, as the latter can be both very complex and highly variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braitenberg, V., Schz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer, Berlin (1998)

    Google Scholar 

  2. Churchland, P.S., Sejnowski, T.J.: The Computational Brain. MIT Press, Cambridge (1999)

    Google Scholar 

  3. Destexhe, A., Rudolph, M., Par, D.: The high-conductance state of neocortical neurons in vivo. Nat. Rev. Neurosci. 4, 739–751 (2003)

    Article  Google Scholar 

  4. Tuckwell, H.C.: Stochastic Processes in the Neurosciences. Society for Industrial and Applied Mathematics, Philadelphia PA (1989)

    Google Scholar 

  5. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes: Exploring the Neural Code. MIT Press, Cambridge (1997)

    Google Scholar 

  6. Dayan, P., Abbott, L.F.: Theoretical Neuroscience. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  7. Heeger, D.: Poisson model of spike generation (2000), http://www.cns.nyu.edu/david/handouts/poisson.pdf

  8. Waters, J., Helmchen, F.: Background synaptic activity is sparse in neocortex. J. Neurosci. 26(32), 8267–8277 (2006)

    Article  Google Scholar 

  9. Tiesinga, P., Fellous, J.M., Sejnowski, T.J.: Regulation of spike timing in visual cortical circuits. Nat. Rev. Neurosci. 9, 97–109 (2008)

    Article  Google Scholar 

  10. Evarts, E.V.: Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J. Neurophysiol. 27, 152–171 (1964)

    Google Scholar 

  11. Soltesz, I.: Diversity in the neuronal machine. Oxford University Press, New York (2005)

    Google Scholar 

  12. Kara, P., Reinagel, P., Reid, R.C.: Low response variability in simultaneously recorded retinal, thalamic, and cortical neurons. Neuron 27, 635–646 (2000)

    Article  Google Scholar 

  13. Steriade, M., McCormick, D.A., Sejnowski, T.J.: Thalamocortical oscillations in the sleeping and aroused brain. Science 262, 679–685 (1993)

    Article  Google Scholar 

  14. Steriade, M., Timofeev, I., Dürmüller, N., Grenier, F.: Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. J. Neurophysiol. 79, 483–490 (1998)

    Google Scholar 

  15. Buzsáki, G.: Rhythms of the brain. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  16. Mureşan, R.C., Jurjuţ, O.F., Moca, V.V., Singer, W., Nikolić, D.: The Oscillation Score: An Efficient Method for Estimating Oscillation Strength in Neuronal Activity. J. Neurophysiol. 99, 1333–1353 (2008)

    Article  Google Scholar 

  17. DeBusk, B.C., DeBruyn, E.J., Snider, R.K., Kabara, J.F., Bonds, A.B.: Stimulus-dependent modulation of spike burst length in cat striate cortical cells. J. Neurophysiol. 78, 199–213 (1997)

    Google Scholar 

  18. Keat, J., Reinagel, P., Reid, R.C., Meister, M.: Predicting Every Spike: A Model for the Responses of Visual Neurons. Neuron 30, 803–817 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Véra Kůrková Roman Neruda Jan Koutník

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moca, V.V., Nikolić, D., Mureşan, R.C. (2008). Real and Modeled Spike Trains: Where Do They Meet?. In: Kůrková, V., Neruda, R., Koutník, J. (eds) Artificial Neural Networks - ICANN 2008. ICANN 2008. Lecture Notes in Computer Science, vol 5164. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87559-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87559-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87558-1

  • Online ISBN: 978-3-540-87559-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics