Skip to main content

Aquaporins as Potential Drug Targets for Meniere's Disease and its Related Diseases

  • Chapter
Book cover Aquaporins

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 190))

The homeostasis of water in the inner ear is essential for maintaining function of hearing and equilibrium. Since the discovery of aquaporin water channels, it has become clear that these channels play a crucial role in inner ear fluid homeostasis. Indeed, proteins or mRNAs of AQP1, AQP2, AQP3, AQP4, AQP5, AQP6, AQP7 and AQP9 are expressed in the inner ear. Many of them are expressed mainly in the stria vascularis and the endolymphatic sac, which are the main sites of secretion and/or absorption of endolymph. Vasopressin type2 receptor is also expressed there. Water homeostasis of the inner ear is regulated in part via the argi-nine vasopressin-AQP2 system in the same fashion as in the kidney, and endolym-phatic hydrops, a morphological characteristic of Meniere's disease, is thought to be caused by mal-regulation of this system. Therefore, aquaporins appear to be important for the development of novel drug therapies for Meniere's disease and related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol Renal Physiol 265:F461

    CAS  Google Scholar 

  • Aoki M, Ando K, Kuze B et al. (2005) The association of antidiuretic hormone levels with an attack of Meniere's disease. Clin Otolaryngol 30:521–525

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Kumagami H, Krippeit-Drews P et al. (1999) Expression pattern of aquaporin water channels in the inner ear of the rat. The molecular basis for a water regulation system in the endolymphatic sac. Hear Res 132:76–84

    Article  PubMed  CAS  Google Scholar 

  • Beitz E, Zenner HP, Schultz JE (2003) Aquaporin-mediated fluid regulation in the inner ear. Cell Mol Neurobiol 23:315–329

    Article  PubMed  CAS  Google Scholar 

  • Couloigner V, Berrebi D, Teixeira M et al. (2004) Aquaporin-2 in the human endolymphatic sac. Acta Otolaryngol 124:449–453

    Article  PubMed  CAS  Google Scholar 

  • Fleeman LM, Irewin PJ, Phillips PA et al. (2000) Effects of an oral vasopressin receptor antagonist (OPC-31260) in a dog with syndrome of inappropriate secretion of antidiuretic hormone. Aust Vet J 78:825–830

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M, Kitahara T, Uno Y et al. (2002) Effects of intratympanic injection of steroids on changes in rat inner ear aquaporin expression. Acta Otolaryngol 122:600–606

    Article  PubMed  CAS  Google Scholar 

  • Fukushima M, Kitahara T, Fuse Y et al. (2004) Changes in aquaporin expression in the inner ear of the rat after i.p. injection of steroids. Acta Otolaryngol Suppl 553:13–18

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Takeda T, Kakigi A et al. (2005) Effects of lithium on endolymph homeostasis and experimentally induced endolymphatic hydrops. ORL J Otorhinolaryngol Relat Spec 67: 282–288

    PubMed  CAS  Google Scholar 

  • Gorelick DA, Praetorius J, Tsunenari T (2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem 7:14

    Article  PubMed  Google Scholar 

  • Gu FM, Han HL, Zhang LS (2006) Effects of vasopressin on gene expression in rat inner ear. Hear Res 222:70–78

    Article  PubMed  CAS  Google Scholar 

  • Hallpike CS, Cairns H (1938) Observation on the pathology of Meniere's syndrome. J Laryngol 53:625–655

    Google Scholar 

  • Han H, Zhang L, Gu F (2005) Expression and its significance of aquaporins in normal guinea pig inner ears. Lin Chuang Er Bi Yan Hou Ke Za Zhi 19:883–885 (Chinese)

    PubMed  Google Scholar 

  • Huang D, Chen P, Chen S et al. (2002) Expression patterns of aquaporins in the inner ear: evidence for concerted actions of multiple types of aquaporins to facilitate water transport in the cochlea. Hear Res 165:85–95

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Rai T, Kuwahara M (2005) Identification of a novel aquaporin, AQP12, expressed in pancreatic acinar cells. Biochem Biophys Res Commun 330:832–838

    Article  PubMed  CAS  Google Scholar 

  • Kakigi A, Takeda T, Sawada S et al. (2006) Antidiuretic hormone and osmolality in isosorbide therapy and glycerol test. ORL J Otorhinolaryngol Relat Spec 68:217–220

    Google Scholar 

  • Kakigi A, Nishimura M, Takeda T, et al. (2008) Expression of aquaporin 1, 3, 4, NKCC1, and NKCC2 in the human endolymphatic sac. Auris Nasu Larynx [Epub ahead of print]

    Google Scholar 

  • Kitahara T, Fukushima M, Uno Y et al. (2003) Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurol Res 25:865– 870

    Article  PubMed  CAS  Google Scholar 

  • Kitano H, Takeda T, Pulec JL et al. (1994) The relationship between vasopressin and endolym-phatic hydrops in the guinea pig. Ear Nose Throat J 73(12):921–925

    PubMed  CAS  Google Scholar 

  • Kitano H, Takeda T, Suzuki M et al. (1997) Vasopressin and oxytocin receptor mRNAs are expressed in the rat inner ear. Neuroreport 8:2289–2292

    Article  PubMed  CAS  Google Scholar 

  • Kumagami H, Loewenheim H, Beitz E et al. (1998) The effect of anti-diuretic hormone on the endolymphatic sac of the inner ear. Pflugers Arch 436:970–975

    Article  PubMed  CAS  Google Scholar 

  • Kwon TH, Nielsen J, Masilamani S et al. (2002) Regulation of collecting duct AQP3 expression: response to mineralocorticoid. Am J Physiol Renal Physiol 283:F1403–F1421

    PubMed  CAS  Google Scholar 

  • Li J, Verkman AS (2001) Impaired hearing in mice lacking aquaporin-4 water channels. J Biol Chem 276:31233–31237

    Article  PubMed  CAS  Google Scholar 

  • Li H, Kamiie J, Morishita Y (2005) Expression and localization of two isoforms of AQP10 in human small intestine. Biol Cell 97:823–829

    Article  PubMed  CAS  Google Scholar 

  • Linsay JR (1942) Labyrinthine hydrops and Meniere's disease. Arch Otolaryngol 35:853–867

    Google Scholar 

  • Lopez IA, Ishiyama G, Lee M et al. (2007) Immunohistochemical localization of aquaporins in the human inner ear. Cell Tissue Res 328:453–460

    Article  PubMed  CAS  Google Scholar 

  • Löwenheim H, Hirt B (2004). Aquaporine. Discovery, function, and significance for otorhinol-aryngology. HNO 52(8):673–678

    Article  PubMed  Google Scholar 

  • Marples D, Christensen BM, Frokiaer J et al. (1998) Dehydration reverses vasopressin antagonist-induced diuresis and aquaporin-2 downregulation in rats. Am J Physiol Renal Physiol 275:F400–F409

    CAS  Google Scholar 

  • Merves M, Bobbitt B, Parker K et al. (2000) Developmental expression of aquaporin 2 in the mouse inner ear. Laryngoscope 10:1925–1930

    Article  Google Scholar 

  • Merves M, Krane CM, Dou H et al. (2003) Expression of aquaporin 1 and 5 in the developing mouse inner ear and audiovestibular assessment of an Aqp5 null mutant. J Assoc Res Oto-laryngol 4:264–275

    Google Scholar 

  • Mhatre AN, Steinbach S, Hribar K et al. (1999) Identification of aquaporin 5 (AQP5) within the cochlea: cDNA cloning and in situ localization. Biochem Biophys Res Commun 264:157–162

    Article  PubMed  CAS  Google Scholar 

  • Mhatre AN, Jero J, Chiappini I et al. (2002) Aquaporin-2 expression in the mammalian cochlea and investigation of its role in Meniere's disease. Hear Res 170:59–69

    Article  PubMed  CAS  Google Scholar 

  • Mhatre AN, Stern RE, Li J (2002) Aquaporin 4 expression in the mammalian inner ear and its role in hearing. Biochem Biophys Res Commun 297:987–996

    Article  PubMed  CAS  Google Scholar 

  • Minami Y, Shimada S, Miyahara H et al. (1998) Selective expression of mercurial-insensitive water channel (AQP-4) gene in Hensen and Claudius cells in the rat cochlea. Acta Otolaryngol Suppl 533:19–21

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Know T, Christensen BM et al. (1999) Physiology and pathophysiology of renal aqua-porins. J Am Soc Nephrol 10:647–663

    PubMed  CAS  Google Scholar 

  • Nielsen S, Frøkiaer J, Marples D et al. (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  • Nishimura M, Kakigi A, Takeda T, Takeda S, Doi K. (2008) Expression of aquaporins, vasopressin type 2 receptor and Na+−K+−Cl contransporters in the rat endolymphatic sac. Acta Otolaryn-gol [Epub ahead of print]

    Google Scholar 

  • Parisi M, Amodeo G, Capurro C et al. (1997) Biophysical properties of epithelial water channels. Biophys Chem 68:255–263

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H et al. (2002) Aquaporin-2 regulation by vasopressin in the rat inner ear. Neuroreport 13:1127–1129

    Article  PubMed  CAS  Google Scholar 

  • Sawada S, Takeda T, Kitano H et al. (2003) Aquaporin-1 (AQP1) is expressed in the stria vascularis of rat cochlea. Hear Res 181:15–19

    Article  PubMed  CAS  Google Scholar 

  • Shambaugh GE, Clemis JD, Arenberg IK (1969) Endolymphatic duct and sac in Meniere's disease. 1. Surgical and histopathologic observations. Arch Otolaryngol 89:816–825

    PubMed  Google Scholar 

  • Stankovic KM, Adams JC, Brown D (1995) Immunolocalization of aquaporin CHIP in the 1995, guinea pig inner ear. Am J Physiol 269:C1450–C1456

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C (1984) Inter- and intracompartmental osmotic gradients within the rat cochlea. Am J Physiol 247:F602–F606

    PubMed  CAS  Google Scholar 

  • Sterkers O, Ferrary E, Amiel C (1988) Production of inner ear fluids. Physiol Rev 68:1083–1128

    PubMed  CAS  Google Scholar 

  • Stoenoiu MS, Ni J, Verkaeren C et al. (2003) Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum. J Am Soc Nephrol 14:555–565

    Article  PubMed  CAS  Google Scholar 

  • Taguchi D, Takeda T, Kakigi A et al. (2007) Expression of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid (TRPV)1, and TRPV4 in the human endolym-phatic sac. Laryngoscope 117:695–698

    Article  PubMed  CAS  Google Scholar 

  • Taguchi D, Takeda T, Kakigi A et al. (2008) Expression and immunolocalization of Aquaporin-6 (Aqp6) in the rat inner ear. Acta Otolaryngol 128:832–840

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Kakigi A, Saito H et al. (1995) Antidiuretic hormone (ADH) and endolymphatic hy-drops. Acta Otolaryngol Suppl 519:219–222

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Sawada S, Kakigi A et al. (1997) Computed radiographic measurement of the dimensions of the vestibular aqueduct in Meniere's disease. Acta Otolaryngol Suppl 528:80–84

    PubMed  CAS  Google Scholar 

  • Takeda T, Takeda S, Kitano H et al. (2000) Endolymphatic hydrops induced by chronic administration of vasopressin. Hear Res 140:1–6

    Article  PubMed  Google Scholar 

  • Takeda T, Sawada S, Takeda S et al. (2003) The effects of V2-antagonist (OPC-31260) on en-dolymphatic hydrops. Hear Res 182:9–18

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Takeda S, Kakigi A et al. (2006) A comparison of dehydration effects of V2-antagonist (OPC-31260) on the inner ear between systemic and round window applications. Hear Res 218:89–97

    Article  PubMed  CAS  Google Scholar 

  • Takeda T, Kakigi A, Nishoka R et al. (2008) Plasma antidiuretic hormone in cases with the early onset of profound unilateral deafness. Auris Nasus Larynx [Epub ahead of print]

    Google Scholar 

  • Takumi Y, Nagelhus EA, Eidet J et al. (1998) Select types of supporting cell in the inner ear express aquaporin-4 water channel protein. Eur J Neurosci 10:3584–3595

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa K (1983) Ü ber die pathologishe Veränderung bei einem Menierè-Kranken. J Otolaryn-gol Jpn 44:2310–2312 (in Japanese)

    Google Scholar 

  • Yazawa Y, Kitahara M (1981) Electron microscopic studies of the endolymphatic sac in Meniere's disease. ORL J Otorhinolaryngol Relat Spec 43:121–130

    PubMed  CAS  Google Scholar 

  • Zhong SX, Liu ZH (2003) Expression of aquaporins in the cochlea and endolymphatic sac of guinea pig. ORL J Otorhinolaryngol Relat Spec 65:284–289

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taizo Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Takeda, T., Taguchi, D. (2009). Aquaporins as Potential Drug Targets for Meniere's Disease and its Related Diseases. In: Beitz, E. (eds) Aquaporins. Handbook of Experimental Pharmacology, vol 190. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79885-9_8

Download citation

Publish with us

Policies and ethics