Skip to main content

PET Radiopharmaceuticals in Nuclear Cardiology: Current Status and Limitations

  • Chapter
Integrating Cardiology for Nuclear Medicine Physicians

Abstract

PET was developed in the 1970s primarily for studies of the brain. However, interest in cardiac PET grew in the 1980s, leading to more widespread availability of whole body PET scanners. This in turn contributed to the application of PET in oncology, which mushroomed in the 1990s. Growth in cardiac PET has, however, been more modest and shows great variation among countries. Many cardiac PET studies are performed using radiopharmaceuticals developed for other purposes, primarily 18F-fluorodeoxyglucose and 15O-water, although a significant fraction of studies use the strontium-82/ rubidium-82 generator developed specifically for cardiac PET. The properties of PET radiopharmaceuticals currently in clinical use for myocardial perfusion and metabolism will be reviewed (Tables 32.1 and 32.2), followed by discussion of agents which may become more widely used in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous (2000) CardioGen-82 Rubidium Rb 82 Generator product monograph. Bracco Diagnostics Inc., Princeton NJ.

    Google Scholar 

  2. Selwyn AP, Allan RM, L’Abbate A et al. (1982) Relation between regional myocardial uptake of rubidium-82 and perfusion: Absolute reduction of cation uptake in ischemia. Am J Cardiol 50:112–121.

    Article  PubMed  CAS  Google Scholar 

  3. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, O’Brien HA Jr, Loberg MD (1983) Myocardial perfusion with rubidium-82. II. Effects of metabolic and pharmacological interventions. J Nucl Med 24:907–915.

    PubMed  CAS  Google Scholar 

  4. Machac J (2005) Cardiac positron emission tomography imaging. Semin Nucl Med 35:17–36.

    Article  PubMed  Google Scholar 

  5. Alvarez-Diez TM, deKemp R, Beanlands R, Vincent J (1999) Manufacture of strontium-82/rubidium-82 generators and quality control of rubidium-82 chloride for myocardial perfusion imaging in patients using positron emission tomography. Appl Radiat Isot 50:1015–1023.

    Article  PubMed  CAS  Google Scholar 

  6. Walsh WF, Fill HR, Harper PV (1977) Nitrogen-13-labeled ammonia for myocardial imaging. Semin Nucl Med 7:59–66.

    Article  PubMed  CAS  Google Scholar 

  7. Schelbert HR, Phelps ME, Hoffman EJ, Huang SC, Selin CE, Kuhl DE (1979) Regional myocardial perfusion assessed with N-13 labeled ammonia and positron emission computerized axial tomography. Am J Cardiol 43:209–218.

    Article  PubMed  CAS  Google Scholar 

  8. Hutchins GD (1997) Quantitative evaluation of myocardial blood flow with [13N]ammonia. Cardiology 88:106–115.

    Article  PubMed  CAS  Google Scholar 

  9. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN (1989) Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 14:639–652.

    Article  PubMed  CAS  Google Scholar 

  10. Visser FC (2001) Imaging of cardiac metabolism using radiolabelled glucose, fatty acids and acetate. Coron Artery Dis 12:S12–S18.

    PubMed  Google Scholar 

  11. Choi Y, Brunken RC, Hawkins RA et al. (1993) Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 20:308–318.

    Article  PubMed  CAS  Google Scholar 

  12. Schoder H, Campisi R, Ohtake T et al. (1999) Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 33:1328–1337.

    Article  PubMed  CAS  Google Scholar 

  13. Tillisch J, Brunken R, Marshall R et al. (1986) Reversibility of cardiac wall motion abnormalities predicted by positron emission tomography. N Engl J Med 314:884–888.

    PubMed  CAS  Google Scholar 

  14. Melin JA, Vanoverschelde JL, Bol A, Heyndrickx G, Wijns W (1994) The use of carbon 11-labeled acetate for assessment of aerobic metabolism. J Nucl Cardiol 1:S48–S57.

    Article  PubMed  CAS  Google Scholar 

  15. Schelbert HR, Phelps ME, Huang SC et al. (1981) N-13 ammonia as an indicator of myocardial blood flow. Circulation 63:1259–1272.

    PubMed  CAS  Google Scholar 

  16. European Directorate for the Quality of Medicines (2002) European Pharmacopoeia, 4th edn.

    Google Scholar 

  17. Meyer GJ, Waters SL, Coenen HH, Luxen A, Maziere B, Langstrom B (1995) PET radiopharmaceuticals in Europe: Current use and data relevant for the formulation of summaries of product characteristics (SPCs). Eur J Nucl Med 22:1420–1432.

    Article  PubMed  CAS  Google Scholar 

  18. Brihaye C, Depresseux JC, Comar D (1995) Radiation dosimetry for bolus administration of oxygen-15-water. J Nucl Med 36:651–656.

    PubMed  CAS  Google Scholar 

  19. Jones SC, Alavi A, Christman D, Montanez I, Wolf AP, Reivich M (1982) The radiation dosimetry of 2[F-18]fluoro-2-deoxy-D-glucose in man. J Nucl Med 23:613–617.

    PubMed  CAS  Google Scholar 

  20. Mejia AA, Nakamura T, Masatoshi I, Hatazawa J, Masaki M, Watanuki S (1991) Estimation of absorbed doses in humans due to intravenous administration of fluorine-18-fluorodeoxyglucose in PET studies. J Nucl Med 32:699–706.

    PubMed  CAS  Google Scholar 

  21. Seltzer MA, Jahan SA, Sparks R et al. (2004) Radiation dose estimates in humans for 11C-acetate whole-body PET. J Nucl Med 45:1233–1236.

    PubMed  CAS  Google Scholar 

  22. Studenov AR, Berridge MS (2001) Synthesis and properties of 18F-labeled potential myocardial blood flow tracers. Nucl Med Biol 28:683–693.

    Article  PubMed  CAS  Google Scholar 

  23. Wallhaus TR, Lacy J, Stewart R et al. (2001) Copper-62-pyruvaldehyde bis(N-methyl-thiosemicarbazone) PET imaging in the detection of coronary artery disease in humans. J Nucl Cardiol 8:67–74.

    Article  PubMed  CAS  Google Scholar 

  24. Tsang BW, Mathias CJ, Green MA (1993) A gallium-68 radiopharmaceutical that is retained in myocardium: 68Ga[(4,6-MeO2sal)2BAPEN]+. J Nucl Med 34:1127–1131.

    PubMed  CAS  Google Scholar 

  25. Fujibayashi Y, Taniuchi H, Yonekura Y, Ohtani H, Konishi J, Yokoyama A (1997) Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med 38:1155–1160.

    PubMed  CAS  Google Scholar 

  26. Hofmann M, Maecke H, Borner R et al. (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: Preliminary data. Eur J Nucl Med 28:1751–1757.

    Article  PubMed  CAS  Google Scholar 

  27. Maziere M, Comar D, Godot JM, Collard P, Cepeda C, Naquet R (1981) In vivo characterization of myocardium muscarinic receptors by positron emission tomography. Life Sci 29:2391–2397.

    Article  PubMed  CAS  Google Scholar 

  28. Langer O, Halldin C (2002) PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 29:416–434.

    Article  PubMed  CAS  Google Scholar 

  29. Fallen EL, Coates G, Nahmias C et al. (1999) Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 137:863–869.

    Article  PubMed  CAS  Google Scholar 

  30. de Jong RM, Blanksma PK, van Waarde A, van Veldhuisen DJ (2002) Measurement of myocardial β-adrenoreceptor density in clinical studies: a role for positron emission tomography? Eur J Nucl Med 29:88–97.

    Article  CAS  Google Scholar 

  31. Sinusas AJ (1999) The potential for myocardial imaging with hypoxia markers. Semin Nucl Med 29:330–338.

    Article  PubMed  CAS  Google Scholar 

  32. Takahashi N, Fujibayashi Y, Yonekura Y et al. (2001) Copper-62 ATSM as a hypoxic tissue tracer in myocardial ischemia. Ann Nucl Med 15:293–296.

    Article  PubMed  CAS  Google Scholar 

  33. Blankenberg FG, Strauss HW (2001) Noninvasive strategies to image cardiovascular apoptosis. Cardiol Clin 19:165–172.

    Article  PubMed  CAS  Google Scholar 

  34. Zijlstra S, Gunawan J, Burchert W (2003) Synthesis and evaluation of a 18F-labelled recombinant annexin-V derivative, for identification and quantification of apoptotic cells with PET. Appl Radiat Isot 58:201–207.

    Article  PubMed  CAS  Google Scholar 

  35. Glaser M, Collingridge DR, Aboagye EO et al. (2003) Iodine-124 labelled Annexin-V as a potential radiotracer to study apoptosis using positron emission tomography. Appl Radiat Isot 58:55–62.

    Article  PubMed  CAS  Google Scholar 

  36. Mukherjee D (2004) Current clinical perspectives on myocardial angiogenesis. Mol Cell Biochem 264:157–167.

    Article  PubMed  CAS  Google Scholar 

  37. McDonald DM, Choyke PL (2003) Imaging of angiogenesis: From microscope to clinic. Nat Med 9:713–725.

    Article  PubMed  CAS  Google Scholar 

  38. Chen X, Sievers E, Hou Y et al. (2005) Integrin αvβ3-targeted imaging of lung cancer. Neoplasia 7:271–279.

    Article  PubMed  CAS  Google Scholar 

  39. Haubner R, Weber WA, Beer AJ et al. (2005) Noninvasive visualisation of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18F]galacto-RGD. PLoS Med 2:e70.

    Article  PubMed  CAS  Google Scholar 

  40. Collingridge DR, Carroll VA, Glaser M et al. (2002) The development of [124I]iodinated-VG76e: A novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 62:5912–5919.

    PubMed  CAS  Google Scholar 

  41. Davenport AP, Maguire JJ (2001) The endothelin system in human saphenous vein graft disease. Curr Opin Pharmacol 1:176–182.

    Article  PubMed  CAS  Google Scholar 

  42. Johnstrom P, Fryer TD, Richards HK et al. (2005) Positron emission tomography using 18F-labelled endothelin-1 reveals prevention of binding to cardiac receptors owing to tissue-specific clearance by ETB receptors in vivo. Br J Pharmacol 144:115–122.

    Article  PubMed  CAS  Google Scholar 

  43. Wu JC, Chen IY, Wang Y et al. (2004) Molecular imaging of the kinetics of vascular endothelial growth factor gene expression in ischemic myocardium. Circulation 110:685–691.

    Article  PubMed  CAS  Google Scholar 

  44. Simoes MV, Miyagawa M, Reder S et al. (2005) Myocardial kinetics of reporter probe 124I-FIAU in isolated perfused rat hearts after in vivo adenoviral transfer of herpes simplex virus type 1 thymidine kinase reporter gene. J Nucl Med 46:98–105.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ballinger, J. (2009). PET Radiopharmaceuticals in Nuclear Cardiology: Current Status and Limitations. In: Movahed, A., Gnanasegaran, G., Buscombe, J., Hall, M. (eds) Integrating Cardiology for Nuclear Medicine Physicians. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78674-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78674-0_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78673-3

  • Online ISBN: 978-3-540-78674-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics