Skip to main content

Mixed-Framework Microporous Natural Zirconosilicates

  • Conference paper

Abstract

Among the rare elements in the Earth Crust, Zr is the most abundant one. Zr-minerals mainly occur in alkaline rocks, except zircon ZrSiO4 which was described in various types of rocks. Zirconium silicates revealed widely in nature and their formation is mainly connected with hydrothermal conditions (200–500°C). The most recent statistics of the IMA Commission of New Minerals, Nomenclature and Classification (CNMNC) shows that among Zr containing minerals Zr silicates form the largest class (73 from the total number of 94 mineral species). The crystal structures of Zr-silicates and Ti-silicates in the beginning of 70th contributed the theory of mixed frameworks formed by TO4 tetrahedra (T=P,Si) and MO6 octahedra (M=Zr,Ti). Zirconosilicates which mixed frameworks are characterized by general formula [ZrmSinO3m+2n]−2m form the largest group within the family of Zr-silicates (53 min. sp.). Most of these compounds exhibit technologically important alkali-ion mobility and ion exchange properties. The mixed frameworks in the structures of these compounds are characterized by the formation of the almost equivalent bonds Si-O-Si or Si-O-Zr, which determine the stability of such polyhedral configurations. ZrO6-octahedra in the structures of zirconosilicates with mixed frameworks do not show the tendency to condensation (unlike TiO6- and NbO6-octahedra in the structures of titano- and niobosilicates) (Pyatenko et al., 1999). That’s why there are no natural zirconosilicates with the ratio Si:Zr<1. The lowest Si:Zr ratio occurs in keldyshite, parakeldyshite and khibinskite (Si:Zr = 2) and some other related zirconosilicates in which structures isolated ZrO6-octahedra are connected with Si2O7 pyrogroups (Pekov and Chukanov, 2005).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blinov VA, Shumyatskaya NG, Voronkov AA, Ilyukhin VV, Belov NV (1977) Refinement of the crystal structure of wadeite K2Zr(Si3O9) and its relationship to kindred structural types. Sov Phys Crystallogr 22:31–35

    Google Scholar 

  • Boggs RC (1988) Calciohilairite: CaZrSi3O9·3H2O, the calcium analogue of hilairite from the golden horn batholith, northern Cascades, Washington. Am Mineral 73:1191–1194

    Google Scholar 

  • Brunowsky B (1936) Die Struktur des Katapleits (Na2ZrSi3O9·2H2O). Acta phys chim URSS 5:863–892

    Google Scholar 

  • Burke EAJ, Ferraris G (2004) New minerals approved in 2003 and nomenclature modifications approved in 2003 by the commission on new minerals and mineral names, international mineralogical association. Can Mineral 42:905–913

    Article  Google Scholar 

  • Cannillo E, Rossi G, Ungaretti L (1973) The crystal structure of elpidite. Am Mineral 58:106–109

    Google Scholar 

  • Chakoumakos BC, Hill RJ, Gibbs GV (1981) A molecular orbital study of rings in silicates and siloxanes. Am Mineral 66:1237–1249

    Google Scholar 

  • Chao GY (1985) The crystal structure of gaidonnayite Na2ZrSi3O9(H2O)2. Can Mineral 23:11–15

    Google Scholar 

  • Chao GY, Rowland JR, Chen TT (1973) The crystal structure of catapleiite. Abstracts with Programs — Geol Soc Am 5(7):572

    Google Scholar 

  • Chukanov NV, Pekov IV (2004) Heterosilicates with tetrahedral-octahedral frameworks: mineralogical and crystal-chemical aspects. Pre-prints of the international symposium “Micro-and mesoporous mineral phases” 9–13

    Google Scholar 

  • Dunn PJ, Newbury D (1983) Loudounite, a new zirconium silicate from Virginia. Can Mineral 21:37–40

    Google Scholar 

  • Fleet SG (1965) The crystal structure of dalyite. Zeitschrift fuer Kristallographie 121:349–368

    Article  Google Scholar 

  • Gerasimovsky VI (1962) Keldyshite, a new mineral. Dokl Akad Nauk USSR Earth Sci 142:123–125

    Google Scholar 

  • Ghose S, Thakur P (1985) The crystal structure of georgechaoite NaKZrSi3O9·2H2O. Can Mineral 23:5–10

    Google Scholar 

  • Ghose S, Wan C, Chao GY (1980) Petarasite, Na5Zr2Si6O18(Cl,OH).2H2O, a zeolite-type zirconosilicate. Can Mineral 18:503–509

    Google Scholar 

  • Gobechiya ER, Pekov IV, Pushcharovsky DYu, Ferraris G, Gula A, Zubkova NV, Chukanov NV (2003) New data on vlasovite: refinement of the crystal structure and the radiation damage of the crystal during the X-ray diffraction experiment. Crystallogr Rep 48:750–754

    Article  Google Scholar 

  • Hawthorne FC (1987) The crystal chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures. Neues Jb Miner Monat 16–30

    Google Scholar 

  • Horvath L, Pfenninger-Horvath E, Gault RA, Tarasoff P (1998) Mineralogy of the Saint-Amable Sill, Varennes and Saint-Amable, Quebec. Mineral Rec 29:83–118

    Google Scholar 

  • Ilyushin GD (1993) New data on crystal structure of umbite K2ZrSi3O9·H2O. Inorg Mater 27:1128–1133

    Google Scholar 

  • Ilyushin GD, Khomyakov AP, Shumyatskaya NG, Voronkov AA, Nevsky NN, Ilyukhin VV, Belov NV (1981a) Crystal structure of a new natural zirconium silicate K4Zr2Si6O18·2H2O. Sov Phys Dokl 26:118–120

    Google Scholar 

  • Ilyushin GD, Voronkov AA, Ilyukhin VV, Nevsky NN, Belov NV (1981b) Crystal structure of natural monoclinic catapleiite Na2ZrSi3O9·2H2O. Sov Phys Dokl 26:808–810

    Google Scholar 

  • Ilyushin GD, Voronkov AA, Nevskii NN, Ilyukhin VV, Belov NV (1981c) Crystal structure of hilairite Na2ZrSi3O9 (H2O)3. Sov Phys Dokl 26:916–917

    Google Scholar 

  • Johnsen O, Ferraris G, Gault RA, Grice JD, Kampf AR, Pekov IV (2003) The nomenclature of eudialyte-group minerals. Can Mineral 41:785–794

    Article  Google Scholar 

  • Johnsen O, Grice JD (1999) The crystal chemistry of the eudialyte group. CanMineral 37:865–891

    Google Scholar 

  • Kabalov YuK, Zubkova NV, Pushcharovsky DYu, Schneider J, Sapozhnikov AN (2000) Powder Rietveld refinement of armstrongite, CaZr[Si6O15]x3H2O. Z Kristallogr 215:757–761

    Article  Google Scholar 

  • Kashaev AA, Sapozhnikov AN (1978) Crystal structure of armstrongite. Sov Phys Crystallogr 23:539–542

    Google Scholar 

  • Khalilov AD, Khomyakov AP, Makhmudov SA (1978) Crystal structure of keldishite NaZr(Si2O6OH). Sov Phys Dokl 23:8–10

    Google Scholar 

  • Khomyakov AP (1977) Parakeldyshite, a new mineral. Dokl Akad Nauk SSSR 237:703–705 (in Russian)

    Google Scholar 

  • Khomyakov AP, Voronkov AA, Kobyashev YuS, Polezhaeva LI (1983) Umbite and paraumbite, new potassium zirconosilicates from the Khibiny alkalic massif. Zapiski VMO 112:461–469 (in Russian)

    Google Scholar 

  • Khomyakov AP, Voronkov AA, Lebedeva SI, Bykov VN, Yurkina KV (1974) Khibinskite, a new mineral. Zapiski VMO 103:110–116 (in Russian)

    Google Scholar 

  • Le Page Y, Perrault G (1976) Structure cristalline de la lemoynite, (Na,K)2CaZr2Si10O26·5-6H2O. Can Mineral 14:132–138

    Google Scholar 

  • Liu Yu, Du H, Xu Y, Ding H, Pang W, Yue Y (1999) Synthesis and characterization of a novel microporous titanisilicate with a structure of penkvilksite-1M’. Micropor Mesopor Mat 28:511–517

    Article  Google Scholar 

  • McDonald AM, Chao GY (2001) Natrolemoynite, a new hydrated sodiium zirconosilicate from Mont Saint-Hilaire, Quebec: Description and structure determination. Can Mineral 39:1295–1306

    Article  Google Scholar 

  • McDonald AM, Chao GY (2005) Bobtraillite, (Na,Ca)13Sr11(Zr,Y,Nb)14Si42B6O132(OH)12·12H2O, a new mineral species from Mont Saint-Hilaire, Quebec: description, structure determination and relationship to benitoite and wadeite. Can Mineral 43:747–758

    Article  Google Scholar 

  • Merlino S, Pasero M, Artioli G, Khomyakov AP (1994) Penkvilksite, a new kind of silicate structure: OD character, X-ray single-crystal (1M), and powder Rietveld (2O) refinements of two MDO polytypes. Am Mineral 79:1185–1193

    Google Scholar 

  • Merlino S, Pasero M, Bellezza M, Pushcharovsky DYu, Gobechia ER, Zubkova NV, Pekov IV (2004) Crystal structure of calcium catapleite. Can Mineral 42:1037–1045

    Article  Google Scholar 

  • Pekov IV (2000) Lovozero Massif: History, Pegmatites, Minerals, Moscow, OP

    Google Scholar 

  • Pekov IV, Chukanov NV (2005) Microporous framework silicate minerals with rare and transition elements: minerogenetic aspects. In: Mineralogy and Geochemistry, vol 57. Rev Mineral Geochem, pp 145–171

    Article  Google Scholar 

  • Pekov IV, Turchkova AG, Chukanov NV (2005) A study of caiton-exchange properties of natural sodium zirconosilicates. I. Experiments in aqueous solutions under room conditions. Abstr V International Symposium “Mineralogical museums”, pp 291–292

    Google Scholar 

  • Pekov IV, Zubkova NV, Pushcharovsky DYu, Kolitsch U, Tillmanns E (2007) Refined crystal structure of parakeldyshite and genetic crystal chemistry of zirconium minerals with [Si2O7] diorthogroups. Crystallogr Rep 52:1066–1071

    Article  Google Scholar 

  • Portnov AM (1964) Calcium catapleiite, a new catapleiite variety. Dokl Acad Nauk USSR Earth Sci 154:98–100

    Google Scholar 

  • Pudovkina ZV, Chernitsova NM (1991) Crystal structure of terskite Na4Zr[H4Si6O18]. Sov Phys Dokl 36:201–203

    Google Scholar 

  • Pudovkina ZV, Chernitsova NM, Voronkov AA, Pyatenko YuA (1980) Crystal structure of zirsinalite Na6CaZr(Si6O18). Sov Phys Dokl 25:69–70

    Google Scholar 

  • Pushcharovskii DYu, Pekov IV, Pasero M, Gobechiya ER, Merlino S, Zubkova NV (2002) Crystal structure of cation-deficient calciohilairite and possible mechanisms of decationization in mixed-framework minerals. Crystallogr Rep 47:748–752

    Article  Google Scholar 

  • Pyatenko YuA, Kurova TA, Chernitsova NM, Pudovkina ZV, Blinov VA, Maximova NV (1999) Niobium, tantalum and zirconium in minerals. Crystal chemistry guide, Moscow, IMGRE (in Russian)

    Google Scholar 

  • Rastsvetaeva RK, Khomyakov AP (1992) Crystal structure of a rare earth analog of hilairite. Sov Phys Crystallogr 37:845–847

    Google Scholar 

  • Sizova RG, Voronkov AA, Khomyakov AP (1974) Refinement of crystal structure of triclinic modification of Na2ZrSi2O7. Structura i Svoistva Kristallov Vladimir 2:30–42 (in Russian)

    Google Scholar 

  • Sokolova EV, Arakcheeva AV, Voloshin AV (1991) Crystal structure of komkovite. Sov Phys Dokl 36:666–668

    Google Scholar 

  • Subbotin VV, Merlino S, Pushcharovsky DYu, Pakhomovsky YaA, Ferro O, Bogdanova AN, Voloshin AV, Sorokhtina NV, Zubkova NV (2000) Tumchaite Na2(Zr,Sn)Si4O11x2H2O — a new mineral from carbonatites of the Vuoriyarvi alkali-ultrabasic massif, Murmansk Region, Russia. Am Mineral 85:1516–1520

    Google Scholar 

  • Tikhonenkova RP, Kazakova ME (1961) Vlasovite, a new zirconium silicate from the Lovozero massif’. Dokl Acad Nauk USSR Earth Sci 137:451–452

    Google Scholar 

  • Uvarova YuA, Sokolova E, Hawthorne FC, Pautov LA, Agakhanov AA (2004) A novel [Si8O45]18− sheet in the crystal structure of zeravshanite, Cs4Na2Zr3[Si18O45](H2O)2. Can Mineral 42:125–134

    Article  Google Scholar 

  • Voronkov AA, Pyatenko YuA (1961) Crystal structure of vlasovite. Sov Phys Crystallogr 6:755–760

    Google Scholar 

  • Voronkov AA, Shumyatskaya NG, Pyatenko YuA (1970) Crystal structure of a new natural modification of Na2Zr(Si2O7). Zh Strukt Khim 11:932–933 (in Russian)

    Google Scholar 

  • Voronkov AA, Zhdanova TA, Pyatenko YuA (1974) Refinement of the structure of vlasovite Na2ZrSi4O11 and some characteristics of the composition and structure of the zirconosilicates. Sov Phys Crystallogr 19:152–156

    Google Scholar 

  • Yamnova NA, Egorov-Tismenko YuK, Pekov IV (2001) Refined Crystal Structure of Lovozerite Na2CaZr[Si6O12(OH,O)6]·H2O. Crystallogr Rep 46:937–941

    Article  Google Scholar 

  • Yamnova NA, Egorov-Tismenko YuK, Pekov IV, Ekimenkova IA (2001) Crystal structure of litvinskite — a new natural member of the lovozerite group. Crystallogr Rep 46:190–193

    Article  Google Scholar 

  • Yamnova NA, Egorov-Tismenko YuK, Pekov IV, Shchegol’kova LV (2004) The crystal structure of kapustinite Na5.5Mn0.25Zr(Si6O16(OH)2): a new mineral of the lovozerite group. Dokl Earth Sci 397:658–662

    Google Scholar 

  • Zubkova NV, Pekov IV, Turchkova AG, Pushcharovskii DYu, Merlino S, Pasero M, Chukanov NV (2007) Crystal structures of potassium-exchanged forms of Catapleiite and Hilairite. Crystallogr Rep 52:65–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zubkova, N.V., Pushcharovsky, D.Y. (2008). Mixed-Framework Microporous Natural Zirconosilicates. In: Krivovichev, S.V. (eds) Minerals as Advanced Materials I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4_6

Download citation

Publish with us

Policies and ethics