Skip to main content

Automating Molecular Docking with Explicit Receptor Flexibility Using Scientific Workflows

  • Conference paper
Book cover Advances in Bioinformatics and Computational Biology (BSB 2007)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 4643))

Included in the following conference series:

Abstract

Computer assisted drug design (CADD) is a process involving the execution of many computer programs, ensuring that the ligand binds optimally to its receptor. This process is usually executed using shell scripts which input parameters assignments and result analyses are complex and time consuming. Moreover, receptors and ligands are naturally flexible molecules. In order to explicitly model the receptor flexibility during molecular docking experiments, we propose to use different receptor conformations derived from a molecular dynamics simulation trajectory. This work presents an integrated scientific workflow solution aiming at automating molecular docking with explicit inclusion of receptor flexibility. Enhydra JAWE and Shark software tools were used to model and execute workflows, respectively. To test our approach we performed docking experiments with the M. tuberculosis enzyme InhA (receptor) and three ligands: NADH, IPCF and TCL. The results illustrate the effectiveness of both the proposed workflow and the implementation of the docking processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luscombe, N.M., Greenbaum, D., Gerstein, M.: What is Bioinformatics? A Proposed Definition and Overview of the Field. Meth. Inform. Med. 4, 346–358 (2001)

    Google Scholar 

  2. Chagoyen, M., Kurul, M.E., De-Alarcón, P.A., Carazo, J.M., Gupta, A.: Designing and Executing Scientific Workflows with a programmable integrator. Bioinformatics 20, 2092–2100 (2004)

    Article  Google Scholar 

  3. Wainer, J., Weske, G.V., Medeiros, C.B.: Scientific Workflow Systems. In: Proceedings of the NFS Workshop on Workflow and Process Automation in Information Systems: State-of-the-art and Future Directions, Athens, Georgia, USA (1996)

    Google Scholar 

  4. Goodsell, D.S., Olson, A.J.: Automated docking of substrates to proteins by simulated annealing. Proteins 8, 195–202 (1990)

    Article  Google Scholar 

  5. Carlson, H.A.: Protein flexibility is an important component of structure-based drug discovery. Curr. Pharm. Des. 8, 1571–1578 (2002)

    Article  Google Scholar 

  6. Mehta, N., Barter, R.H.: Design Document for JAWE2Openflow Project 2004 (accessed in December 2005), available in http://forge.objectweb.org/projects/jawe/

  7. Enhydra Shark (accessed in December 2005), available in http://forge.objectweb.org/projects/shark/

  8. Case, D.A., Pearlman, D.A., Caldwell, J.W., Cheathem III, T.E., Ross, W.R., Simmerling, C.L., Darden, T.A., Merz, K.M., Stanton, R.V., Cheng, A.L., Vincent, J.J., Crowley, M., Tsui, V., Radmer, R.J., Duan, Y., Pitera, J., Massova, I., Seibel, G.L., Singh, U.C., Weiner, P.K., Kollman, P.A.: AMBER 6.0. University of California, San Francisco (1999)

    Google Scholar 

  9. Drews, J.: Drug discovery: A historical perspective computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 6, 402–406 (1996)

    Article  Google Scholar 

  10. Kuntz, I.D.: Structure-based strategies for drug design and discovery. Science 257, 1078–1082 (1992)

    Article  Google Scholar 

  11. Schroeder, E.K., Basso, L.A., Santos, D.S., Norberto de Souza, O.: Molecular Dynamics Simulation Studies of the Wild-Type, I21V, and I16T Mutants of Isoniazid-Resistant Mycobacterium tuberculosis Enoyl Reductase (InhA) in Complex with NADH: Toward the Understanding of NADH-InhA Different Affinities. Biophys. J. 89, 876–884 (2005)

    Article  Google Scholar 

  12. Lin, J-H., Perryman, A.L., Schames, J.R., McCammon, J.A.: Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J. Am. Chem. Soc. 124, 5632–5633 (2002)

    Article  Google Scholar 

  13. Sali, A.: 100.000 Protein Structures for the Biologist. Nat. Struct. Biol. 5, 1029–1032 (1998)

    Article  Google Scholar 

  14. van Gunsteren, W.F., Berendsen, H.J.C.: Computer Simulation of Molecular Dynamics Methodology, Aplications and Perspectives in Chemistry. Angew. Chem. Int. Ed. Engl. 29, 992–1023 (1990)

    Article  Google Scholar 

  15. Dessen, A., Quémard, A., Blanchard, J.S., Jacobs Jr., W.R., Sacchettini, J.C.: Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267, 1638–1641 (1995)

    Article  Google Scholar 

  16. Workflow Management Coalition – Terminology & Glossary: Document number WFMC-TC-1011. Document Status- Issue 3.0 (1999) (accessed in March 2006), available in http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

  17. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M.A., Lee, J., Tao, Y., Zhao, Y.: Scientific Workflow Management and the Kepler System. Concurrency and Computat.: Pract. Exper. 18, 1039–1065 (2005)

    Article  Google Scholar 

  18. Weske, M., Vossen, G., Medeiros, C.: Scientific Workflow Management: WASA Architecture and Applications. In: Revell, N., Tjoa, A.M. (eds.) DEXA 1995. LNCS, vol. 978, Springer, Heidelberg (1995)

    Google Scholar 

  19. Kua, J., Zhang, Y., McCammon, A.: Studying Enzime Binding Specificity in Acetylcholinesterase Using a Combined Molecular Dynamics and Multiple Docking Approach. J. Am. Chem. Soc. 124, 8260–8267 (2002)

    Article  Google Scholar 

  20. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: PDB - Protein Data Bank. Nucl. Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  21. Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723 (1997)

    Article  Google Scholar 

  22. Chemical Computing Group, Inc. Montreal, Quebec, Canada. Molecular Operating Environment (MOE 2004.03) (accessed in July 2006), available in http://www.chemcomp.com

  23. Oliveira, J.S., Sousa, E.H.S., Basso, L.A., Palaci, M., Dietze, R., Santos, D.S., Moreira, I.S.: An inorganic iron complex that inhibits wild-type and an isoniazid-resistant mutant 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis. Chem. Comm. 3, 312–313 (2004)

    Article  Google Scholar 

  24. Kuo, M.R., Morbidoni, H.R., Alland, D., Sneddon, S.F., Gourlie, B.B., Staveski, M.M., Leonard, M., Gregory, J.S., Janjigian, A.D., Yee, C., Musser, J.M., Kreiswirth, B., Iwamoto, H., Perozzo, R., Jacobs Jr., W.R., Sacchettini, J.C., Fodock, D.A.: Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J. Biol. Chem. 278, 20851–20859 (2003)

    Article  Google Scholar 

  25. Rozwarski, D.A., Grant, G.A., Barton, D.H., Jacobs Jr., W.R., Sacchettini, J.C.: Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279, 98–102 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marie-France Sagot Maria Emilia M. T. Walter

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Machado, K.S., Schroeder, E.K., Ruiz, D.D., Norberto de Souza, O. (2007). Automating Molecular Docking with Explicit Receptor Flexibility Using Scientific Workflows. In: Sagot, MF., Walter, M.E.M.T. (eds) Advances in Bioinformatics and Computational Biology. BSB 2007. Lecture Notes in Computer Science(), vol 4643. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73731-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73731-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73730-8

  • Online ISBN: 978-3-540-73731-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics