Skip to main content

Case-Based Reasoning for Image Segmentation by Watershed Transformation

  • Chapter
Case-Based Reasoning on Images and Signals

Part of the book series: Studies in Computational Intelligence ((SCI,volume 73))

Summary

This chapter introduces a novel image-segmentation scheme based on case-based reasoning. Image segmentation is aimed at dividing an image into a number of different regions in such a way that each region is homogeneous with respect to a given property, but the union of any two adjacent regions is not. To reach this goal, a number of different approaches have been suggested in the literature, among which we consider here watershed-based segmentation. The basic idea of this segmentation scheme is to identify in the gray-level image a suitable set of seeds from which to perform a growing process. The growing process groups to each seed all pixels that are closer to that seed more than to any other seed, provided that a certain homogeneity condition is satisfied. Since any segmentation method includes some parameters, whose values depend on the image characteristics, CBR can be profitably used to improve the performance of the adopted segmentation method and to ensure that good segmentation results are obtained even if the segmentation method is applied to images with different characteristics. In practice, CBR will select from a case-base the cases having image characteristics similar to those of the current input image, and will apply to the current image the segmentation parameters associated to the most similar case. Image characteristics will be computed in terms of mean features on the whole image, and a proper similarity measure will be used to select in the case-base the most similar case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.S. Fu, J.K. Mui, A survey on image segmentation, Pattern Recognition, 13, 1, 3–16, 1981.

    Article  MathSciNet  Google Scholar 

  2. R.M. Haralick, L.G. Shapiro, Image segmentation techniques, Computer Vision, Graphics, and Image Processing, 29, 1, 100–132, 1985.

    Article  Google Scholar 

  3. N.R. Pal, S.K. Pal, A review on image segmentation techniques, Pattern Recognition, 26, 9, 1277–1294, 1993.

    Article  Google Scholar 

  4. D.L. Pham, C. Xu, J.L. Prince, Current methods in medical image segmentation, Annual Review of Biomedical Engineering, 2, 315–337, 2000.

    Article  Google Scholar 

  5. L. Lucchese, S.K. Mitra, Color Image Segmentation: A State-of-the-Art Survey, “Image Processing, Vision, and Pattern Recognition,” Proc. of the Indian National Science Academy (INSA-A), New Delhi, India, Vol. 67 A, No. 2, 207–221, 2001.

    Google Scholar 

  6. H.D. Cheng, X.H. Jiang, Y. Sun, J. Wang, Color image segmentation: advances and prospects, Pattern Recognition, 34, 2259–2281, 2001.

    Article  MATH  Google Scholar 

  7. J. Freixenet, X. Muñoz, D. Raba, J. Martí, X. Cufí, Yet Another Survey on Image Segmentation: Region and Boundary Information Integration, Proc. 7th ECCV, LNCS 2352, Springer, 408–422, 2002.

    Google Scholar 

  8. P.K. Sahoo, S. Soltani, A.K.C. Wong, Y.C. Chen, A survey of thresholding techniques, Comput. Vis. Graph. Im. Proc., 41, 233–260, 1988.

    Article  Google Scholar 

  9. A.D. Brink, Grey-level thresholding of images using a correlation criterion, Pattern Recognition Letters, 9, 5, 335–341, 1989.

    Article  MATH  Google Scholar 

  10. H. Luijendijk, Automatic threshold selection using histograms based on the count of 4-connected regions, Pattern Recognition Letters, 12, 4, 219–228, 1991.

    Article  Google Scholar 

  11. R.J. Whatmough, Automatic threshold selection from a histogram using the “exponential hull”, CVGIP: Graphical Models and Image Processing, 53, 6, 592–600, 1991.

    Article  Google Scholar 

  12. W.-N. Lie, An efficient threshold-evaluation algorithm for image segmentation based on spatial graylevel co-occurrences, Signal Processing, 33, 1, 121–126, 1993.

    Article  Google Scholar 

  13. L. Wang, J. Bai, Threshold selection by clustering gray levels of boundary Pattern Recognition Letters, 24, 12, 1983–1999, 2003.

    Article  MathSciNet  Google Scholar 

  14. J. Sauvola, M. Pietikäinen, Adaptive document image binarization, Pattern Recognition, 33, 2, 225–236, 2000.

    Article  Google Scholar 

  15. O. Demirkaya, M.H. Asyali, Determination of image bimodality thresholds for different intensity distributions, Signal Processing: Image Communication, 19, 6, 507–516, 2004.

    Article  Google Scholar 

  16. M.A. Patricio and D. Maravall, A novel generalization of the gray-scale histogram and its application to the automated visual measurement and inspection of wooden Pallets, Image and Vision Computing, 2006 (in press).

    Google Scholar 

  17. S. Chen, D. Li, Image binarization focusing on objects, Neurocomputing, 69, 16–18, 2411–2415, 2006.

    Article  Google Scholar 

  18. P. Perner, An architecture for a CBR image segmentation system, Journal of Engineering Application in Artificial Intelligence, Engineering Applications of Artificial Intelligence,12-6, 749–759, 1999.

    Article  Google Scholar 

  19. B.J. Schachter, L.S. Davis, A. Rosenfeld, Some experiments in image segmentation by clustering of local feature values, Pattern Recognition, 11, 1, 19–28, 1979.

    Article  Google Scholar 

  20. M. Celenk, A color clustering technique for image segmentation, Computer Vision, Graphics, and Image Processing, 52, 2, 145–170, 1990.

    Article  Google Scholar 

  21. J.C. Bezdek, L.A. Hall, L.P. Clarke, Review of MR image segmentation techniques using pattern recognition”, Med. Phys., 20, 1033–1048, 1993.

    Article  Google Scholar 

  22. P. Schroeter, J. Bigün, Hierarchical image segmentation by multi-dimensional clustering and orientation-adaptive boundary refinement, Pattern Recognition, 28, 5, 695–709, 1995.

    Article  Google Scholar 

  23. D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image segmentation, Proc. Society Conference on Computer Vision and Pattern Recognition (CVPR’97) 750, 1997, 1997.

    Google Scholar 

  24. R.P. Velthuizen, L.O. Hall, L.P. Clarke, M.L. Silbiger, An investigation of mountain method clustering for large data sets, Pattern Recognition, 30, 7, 1121–1135, 1997.

    Article  Google Scholar 

  25. E.J. Pauwels, G. Frederix, Finding Salient Regions in Images: Nonparametric Clustering for Image Segmentation and Grouping, Computer Vision and Image Understanding, 75, 1–2, 73–85, 1999.

    Article  Google Scholar 

  26. K.B. Eom, Unsupervised segmentation of spaceborne passive radar images, Pattern Recognition Letters, 20, 5, 485–494, 1999.

    Article  Google Scholar 

  27. J. Cutrona, N. Bonnet, M. Herbin, F. Hofer, Advances in the segmentation of multi-component microanalytical images, Ultramicroscopy, 103, 2, 141–152, 2005.

    Article  Google Scholar 

  28. K. Hammouche, M. Diaf, J.-G. Postaire, A clustering method based on multidimensional texture analysis, Pattern Recognition, 39, 7, 1265–1277, 2006.

    Article  MATH  Google Scholar 

  29. S. Filin, N. Pfeifer, Segmentation of airborne laser scanning data using a slope adaptive neighborhood, ISPRS Journal of Photogrammetry and Remote Sensing, 60, 2, 71–80, 2006.

    Article  Google Scholar 

  30. J.-P. Gambotto, A new approach to combining region growing and edge detection, Pattern Recognition Letters, 14, 11, 869–875, 1993.

    Article  MATH  Google Scholar 

  31. Il Y. Kim, H. S. Yang, A systematic way for region-based image segmentation based on Markov Random Field model, Pattern Recognition Letters, 15, 10, 969–976, 1994.

    Article  Google Scholar 

  32. M.A. Wani, B.G. Batchelor, Edge-Region-Based Segmentation of Range Images, IEEE Trans on PAMI, 16, 3, 314–319, 1994.

    Google Scholar 

  33. N. Ito, R. Kamekura, Y. Shimazu, T. Yokoyama, Y. Matsushita, The combination of edge detection and region extraction in nonparametric color image segmentation, Information Sciences, 92, 1–4, 277–294, 1996.

    Article  Google Scholar 

  34. X.M. Pardo, D. Cabello, Biomedical active segmentation guided by edge saliency, Pattern Recognition Letters, 21, s 6–7, 559–572, 2000.

    Article  Google Scholar 

  35. X. M. Pardo, M.J. Carreira, A. Mosquera, D. Cabello, A snake for CT image segmentation integrating region and edge information, Image and Vision Computing, 19, 7, 461–475, 2001.

    Article  Google Scholar 

  36. C.D. Kermad, K. Chehdi, Automatic image segmentation system through iterative edge–region co-operation, Image and Vision Computing, 20, 8, 541–555, 2002.

    Article  Google Scholar 

  37. X. Muñoz, J. Freixenet, X. Cufí, J. Martí, Strategies for image segmentation combining region and boundary information, Pattern Recognition Letters, 24, 1–3, 375–392, 2003.

    Article  Google Scholar 

  38. M.I. Rajab, M.S. Woolfson, S.P. Morgan, Application of region-based segmentation and neural network edge detection to skin lesions, Computerized Medical Imaging and Graphics, 28, 1–2, 61–68, 2004.

    Article  Google Scholar 

  39. M. Mueller, K. Segl, H. Kaufmann, Edge- and region-based segmentation technique for the extraction of large, man-made objects in high-resolution satellite imagery, Pattern Recognition, 37, 8, 1619–1628, 2004.

    Article  Google Scholar 

  40. Y. Zhou, J. Starkey, L. Mansinha, Segmentation of petrographic images by integrating edge detection and region growing, Computers & Geosciences, 30, 8, 817–831, 2004.

    Article  Google Scholar 

  41. M.I. Rajab, M.S. Woolfson, S.P. Morgan, Application of region-based segmentation and neural network edge detection to skin lesions, Computerized Medical Imaging and Graphics, 28, 1–2, 61–68, 2004.

    Article  Google Scholar 

  42. T. Chen, D. Metaxas, A hybrid framework for 3D medical image segmentation, Medical Image Analysis, 9, 6, 547–565, 2005.

    Article  Google Scholar 

  43. I. Dydenko, F. Jamal, O. Bernard, J. D’hooge, I.E. Magnin, D. Friboulet, A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography, Medical Image Analysis, 10, 2, 162–177, 2006.

    Article  Google Scholar 

  44. S. Beucher, F. Meyer, ‘The morphological approach of segmentation: the watershed transformation’, in Dougherty E. (Ed.) Mathematical Morphology in Image Processing, Marcel Dekker, New York, 433–481, 1993.

    Google Scholar 

  45. P.K. Saha, J.K. Udupa, D. Odhner, Scale-Based Fuzzy Connected Image Segmentation: Theory, Algorithms, and Validation, Computer Vision and Image Understanding, 77, 2, 145–174, 2000.

    Article  Google Scholar 

  46. Q. Wang, Z. Chi, R. Zhao, Image Thresholding by Maximizing the Index of Nonfuzziness of the 2-D Grayscale Histogram, Computer Vision and Image Understanding, 85, 2, 100–116, 2002.

    Article  MATH  Google Scholar 

  47. G.C. Karmakar, L.S. Dooley, A generic fuzzy rule based image segmentation algorithm, Pattern Recognition Letters, 23, 10, 1215–1227, 2002.

    Article  MATH  Google Scholar 

  48. L. Patino, Fuzzy relations applied to minimize over segmentation in watershed algorithms, Pattern Recognition Letters, 26, 6, 819–828, 2005.

    Article  Google Scholar 

  49. W. Cai, S. Chen, D. Zhang, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation, Pattern Recognition, 2006 (in press).

    Google Scholar 

  50. M. Grimnes, A. Aamodt, A two layer case-based reasoning architecture for medical image understanding, in I. Smith & B. Faltings (Eds.) Advances in Case-Based Reasoning, Springer Verlag, Berlin, 164–178 1996.

    Chapter  Google Scholar 

  51. J. Jarmulak, Case-based classification of ultrasonic B-Scans: Case-base organisation and case retrieval, in B. Smyth and P. Cunningham (Eds.) Advances in Case-Based Reasoning, LNAI 1488, Springer Verlag. Berlin, 100–111, 1998.

    Chapter  Google Scholar 

  52. P. Perner, Different Learning Strategies in a Case-Based Reasoning System for Image Interpretation, in B. Smyth and P. Cunningham (Eds.), Advances in Case-Based Reasoning, LNAI 1488, Springer Verlag, Berlin, 251–261, 1998.

    Chapter  Google Scholar 

  53. R. Macura, K. Macura, MacRad: Radiology Image Resource with a Case-Based Retrieval System, in: M. Veloso and A. Aamodt (eds.), Case-Based Reasoning: Research and Development, Springer, Berlin, 43–45, 1995.

    Chapter  Google Scholar 

  54. M. Haddad, K-P. Adlassnig, G. Porenta, Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams, Artificial Intelligence in Medicine, 9, 61–78, 1997.

    Article  Google Scholar 

  55. M.C. Jaulent, C. Le Bozec, E. Zapletal, P. Degoulet, Case based diagnosis in histopathology of breast tumours. Medinfo. 9 Pt 1:544–8, 1998.

    Google Scholar 

  56. V. Ficet-Cauchard, C. Porquet, M. Revenu, CBR for the reuse of image processing knowledge: A recursive retrieval/adaption strategy, in K.-D. Althoff, R. Bergmann, L.K. Branting (Eds.) Case-Based Reasoning Research and Development, Springer, Berlin, 438–453, 1999.

    Chapter  Google Scholar 

  57. A. Micarelli, A. Neri, G. Sansonetti, A case-based approach to image recognition, in E. Blanzieri and L. Portinale (Eds.) Advances in Case-Based Reasoning, Springer Verlag, Berlin, 443–454, 2000.

    Chapter  Google Scholar 

  58. P. Perner, An Architecture for a CBR Image Segmentation System, Journal on Engineering Application in Artificial Intelligence, Engineering Applications of Artificial Intelligence, 12 (6), 749–759, 1999.

    Article  Google Scholar 

  59. P. Perner, CBR Ultra Sonic Image Interpretation. in: E. Blanzieri and L. Portinale (Eds.), Advances in Case-based Reasoning, LNAI 1898, Springer Verlag, Berlin, 479–481, 2000.

    Chapter  Google Scholar 

  60. P. Perner, Incremental Learning of Retrieval Knowledge in a Case-Based Reasoning System, in K.D. Ashley and D.G. Bridge (Eds.), Case-Based Reasoning – Research and Development, LNAI 2689, Springer Verlag, Berlin, 422–436, 2003.

    Chapter  Google Scholar 

  61. P. Perner, Are case-based reasoning and dissimilarity-based classification two sides of the same coin? Journal Engineering Applications of Artificial Intelligence, 5/3, 205–216, 2002.

    Article  Google Scholar 

  62. P. Perner, TH. Günther, H. Perner, G. Fiss, R. Ernst, Health Monitoring by an Image Interpretation System - A System for Airborne Fungi Identification, in P. Perner, R. Brause, H-G. Holzhütter (Eds.), Medical Data Analysis, LNCS 2868, Springer Verlag, Berlin, 64–77, 2003.

    Google Scholar 

  63. P. Perner, H. Perner, B. Müller, Similarity Guided Learning of the Case Description and Improvement of the System Performance in an Image Classification System, in S. Craw and A. Preece (Eds.), Advances in Case-Based Reasoning, LNAI 2416, Springer Verlag, Berlin, 604–612, 2002.

    Google Scholar 

  64. P. Perner, S. Jähnichen, Case Acquisition and Case Mining for Case-Based Object Recognition, in P. Funk and P.A. González Calero (eds.), Advances in Case-Based Reasoning, LNAI 3155, Springer Verlag, Berlin, 616–629, 2004.

    Google Scholar 

  65. P. Perner, A. Bühring, Case-Based Object Recognition, in P. Funk and P.A. González Calero (Eds.), Advances in Case-Based Reasoning, LNAI 3155, Springer Verlag, Berlin, 375–388, 2004.

    Google Scholar 

  66. X. Yong, D. Feng, Z. Rongchun, M. Petrou, Learning-based algorithm selection for image segmentation, Pattern Recognition Letters, 26 (8), 1059–1068.

    Google Scholar 

  67. S. Beucher, C. Lantuéjoul, Use of watersheds in contour detection, Proc. Int. Workshop on Image Processing, Real-time Edge and Motion Detection/estimation, Rennes, France, 12–21, 1979.

    Google Scholar 

  68. W.E. Higgins, E.J. Ojard, Interactive morphological watershed analysis for 3D medical images, Computerized Medical Imaging and Graphics, 17, 4–5, 387–395, 1993.

    Article  Google Scholar 

  69. M. Baccar, L.A. Gee, R.C. Gonzalez, M.A. Abidi, Segmentation of range images via data fusion and morphological watersheds, Pattern Recognition, 29, 10, 1673–1687, 1996.

    Article  Google Scholar 

  70. J. Sijbers, P. Scheunders, M. Verhoye, A. Van der Linden, D. van Dyck, E. raman, Watershed-based segmentation of 3D MR data for volume quantization, Magnetic Resonance Imaging, 15, 6, 679–688

    Google Scholar 

  71. P.S. Umesh Adiga, B.B. Chaudhuri, An efficient method based on watershed and rule-based merging for segmentation of 3-D histo-pathological images, Pattern Recognition, 34, 7,1449–1458, 2001.

    Article  MATH  Google Scholar 

  72. M.E. Rettmann, X. Han, C. Xu, J.L. Prince, Automated Sulcal Segmentation Using Watersheds on the Cortical Surface, NeuroImage, 15, 2, 329–344, 2002.

    Article  Google Scholar 

  73. M.M.J. Letteboer, O.F. Olsen, E.B. Dam, P.W.A. Willems, M.A. Viergever, W.J. Niessen, Segmentation of tumors in magnetic resonance brain images using an interactive multiscale watershed algorithm1, Academic Radiology, 11, 10, 1125–1138, 2004.

    Article  Google Scholar 

  74. Y.-L. Huang, D.-R. Chen, Watershed segmentation for breast tumor in 2-D sonography, Ultrasound in Medicine & Biology, 30, 5, 625–632, 2004.

    Article  Google Scholar 

  75. J.E. Cates, R.T. Whitaker, G.M. Jones, Case study: an evaluation of user-assisted hierarchical watershed segmentation, Medical Image Analysis, 9, 6, 566–578, 2005.

    Article  Google Scholar 

  76. R. Rodríguez, T.E. Alarcón, O. Pacheco, A new strategy to obtain robust markers for blood vessels segmentation by using the watersheds method, Computers in Biology and Medicine, 35, 8, 665–686, 2005.

    Article  Google Scholar 

  77. Z. Wang, C. Song, Z. Wu, X. Chen, Improved watershed segmentation algorithm for high resolution remote sensing images using texture, Proc. IEEE Int Conf. IGARSS ’05, 5, 3721–3723, 2005.

    Google Scholar 

  78. Y.-M. Li, X.-P. Zeng, A new strategy for urinary sediment segmentation based on wavelet, morphology and combination method, Computer Methods and Programs in Biomedicine, 2006 (in press).

    Google Scholar 

  79. N. Passat, C. Ronse, J. Baruthio, J.-P. Armspach, J. Foucher, Watershed and multimodal data for brain vessel segmentation: Application to the superior sagittal sinus, Image and Vision Computing, 2006 (in press).

    Google Scholar 

  80. J. Barraud, The use of watershed segmentation and GIS software for textural analysis of thin sections, Journal of Volcanology and Geothermal Research, 154, 1–2, 17–33, 2006.

    Article  Google Scholar 

  81. J. Yan, B. Zhao, L. Wang, A. Zelenetz, L. H. Schwartz, Marker-controlled watershed for lymphoma segmentation in sequential CT images, Medical Physics, 33, 7, 2452–2460, 2006.

    Article  Google Scholar 

  82. F. Meyer, S. Beucher, Morphological segmentation, Journal of Visual Communication and Image Representation, 1, 1, 21–46, 1990.

    Article  Google Scholar 

  83. P.J. Soille, M.M. Ansoult, Automated basin delineation from digital elevation models using mathematical morphology, Signal Processing, 20, 2, Pages 171–182, 1990.

    Article  Google Scholar 

  84. Ph. Salembier, Morphological multiscale segmentation for image coding, Signal Processing, 38, 3, 359–386, 1994.

    Article  Google Scholar 

  85. L. Najman, M. Schmitt, Watershed of a continuous function, Signal Processing, 38, 1, 99–112, 1994.

    Article  Google Scholar 

  86. F. Meyer, Topographic distance and watershed lines, Signal Processing, 38, 1, 113–125, 1994.

    Article  MATH  Google Scholar 

  87. R. Adams L. Bischof, Seeded Region Growing, IEEE Trans. on PAMI, 16, 6, 641–647, 1994.

    Google Scholar 

  88. T. Viero, D. Jeulin, Morphological Extraction of Line Networks from Noisy Low-Contrast Images, Journal of Visual Communication and Image Representation, 6, 4, 335–347, 1995.

    Article  Google Scholar 

  89. D. Wang, A multiscale gradient algorithm for image segmentation using watersheds, Pattern Recognition, 30, 12, 2043–2052, 1997.

    Article  Google Scholar 

  90. A. Mehnert, P. Jackway, An improved seeded region growing algorithm, Pattern Recognition Letters, 18, 10, 1065–1071, 1997.

    Article  Google Scholar 

  91. L. Shafarenko, M. Petrou, J. Kittler, Automatic watershed segmentation of randomly textured color images, IEEE Transactions on Image Processing, 6, 11, 1530–1544, 1997

    Article  Google Scholar 

  92. J. Crespo, R.W. Schafer, J. Serra, C. Gratin, F. Meyer, The flat zone approach: A general low-level region merging segmentation method, Signal Processing, 62, 1, 37–60, 1997.

    Article  MATH  Google Scholar 

  93. A.N. Moga, B. Cramariuc, M. Gabbouj, Parallel watershed transformation algorithms for image segmentation, Parallel Computing, 24, 14, 1981–2001, 1998.

    Article  Google Scholar 

  94. E. Pratikakis, H. Sahli, J. Cornelis, Low level image partitioning guided by the gradient watershed hierarchy, Signal Processing, 75, 2, 173–195, 1999.

    Article  MATH  Google Scholar 

  95. A. Bieniek, A. Moga, An efficient watershed algorithm based on connected components, Pattern Recognition, 33, 6, 907–916, 2000.

    Article  Google Scholar 

  96. A. Bleau, L.J. Leon, Watershed-Based Segmentation and Region Merging, Computer Vision and Image Understanding, 77, 3, 317–370, 2000.

    Article  Google Scholar 

  97. J. Weickert, Efficient image segmentation using partial differential equations and morphology, Pattern Recognition, 34, 9, 1813–1824, 2001.

    Article  MATH  Google Scholar 

  98. J.B.T.M. Roerdink, A. Meijster, The watershed transform: definitions, algorithms and parallelization strategies, Fundamenta Informaticae, 41, 187–228, 2001.

    MathSciNet  Google Scholar 

  99. N. Malpica, J.E. Ortuño, A. Santos, A multichannel watershed-based algorithm for supervised texture segmentation, Pattern Recognition Letters, 24, 9–10, 1545–1554, 2003.

    Article  MATH  Google Scholar 

  100. J.-B. Kim, H.-J. Kim, Multiresolution-based watersheds for efficient image segmentation, Pattern Recognition Letters, 24, 1–3, pp 473–488, 2003.

    Article  Google Scholar 

  101. H.T. Nguyen, M. Worring, R. van den Boomgaard, Watersnakes: Energy-Driven Watershed Segmentation, IEEE Trans. on PAMI, 25, 3, 330–342, 2003.

    Google Scholar 

  102. C. Rosito Jung, J. Scharcanski, Robust watershed segmentation using wavelets, Image and Vision Computing, 23, 7, 661–669, 2005.

    Article  Google Scholar 

  103. C.G. Zhao, T.G. Zhuang, A hybrid boundary detection algorithm based on watershed and snake, Pattern Recognition Letters, 26, 9, 1256–1265, 2005.

    Article  Google Scholar 

  104. S.E. Hernandez, K.E. Barner, Y. Yuan, Region merging using homogeneity and edge integrity for watershed-based image segmentation, Optical Engineering, 44, 1, 2005.

    Article  Google Scholar 

  105. H. Sun, J. Yang, M. Ren, A fast watershed algorithm based on chain code and its application in image segmentation, Pattern Recognition Letters, 26, 9, 1266–1274, 2005.

    Article  Google Scholar 

  106. M. Frucci, G. Ramella, G. Sanniti di Baja, Using resolution pyramids for watershed image segmentation, Image and Vision Computing, 2006 (in press).

    Google Scholar 

  107. V. Osma-Ruiz, J.I. Godino-Llorente, N. Sáenz-Lechón, P. Gómez-Vilda, An improved watershed algorithm based on efficient computation of shortest paths, Pattern Recognition, 2006 (in press).

    Google Scholar 

  108. A. Duarte, Á. Sánchez, F. Fernández, A.S. Montemayor, Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic, Pattern Recognition Letters, 27, 11 1239–1251, 2006.

    Article  Google Scholar 

  109. C. Rosito Jung, Combining wavelets and watersheds for robust multiscale image segmentation, Image and Vision Computing, 2006 (in press).

    Google Scholar 

  110. M. Frucci, Over segmentation Reduction by Flooding Regions and Digging Watershed Lines, International Journal of Pattern Recognition and Artificial Intelligence, World Scientific, Singapore, 20, 1, 15–38, 2006.

    Google Scholar 

  111. F. Kummert, H. Niemann, R. Prechtel, G. Sagerer, Control and explanation in signal understanding environment, Signal Processing, 32, 111–145, 1993.

    Article  Google Scholar 

  112. J. Hunter, S. Little, A framework to enable the semantic inferencing and querying of multimedia content, International Journal of Web Engineering and Technology, 2-2/, 264–286, 2005

    Article  Google Scholar 

  113. P. Zamperoni, V. Starovotov, How dissimilar are two gray-scale images, Proc. 17 th DAGM Symposium, Springer, Berlin, 448–445, 1995.

    Google Scholar 

  114. D.L. Wilson, A.J. Baddeley, R.A. Owens, A new metric for grey-scale image comparision, Interna. Journal of Computer Vision, 24(1), 1–29, 1997.

    Google Scholar 

  115. H. Dreyer, W. Sauer, Prozessanalyse, Berlin, Verlag Technik, 1982.

    Google Scholar 

  116. R.M. Haralick, I. Dinstein, K. Shanmugam, Textural features for image classification, IEEE Transactions on Systems, Man, and Cybernetics, 3(11), 610–630, 1973.

    Article  Google Scholar 

  117. A.K. Jain, R.C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1988.

    Google Scholar 

  118. A. Tversky, Feature similarity, Psychological Review 84(4), 327–350, 1977.

    Article  Google Scholar 

  119. S. Jänichen, P. Perner, Conceptual clustering and case generalization of 2-dimensional forms, Computational Intelligence, 22 (3/4), 177–193, 2006.

    Article  MathSciNet  Google Scholar 

  120. D. Wettschereck, D.W. Aha, Weighting Features, in M.M. Veloso and A. Aamodt (Eds.), Case-Based Reasoning Research and Development, Springer-Verlag, 347–358, 1995.

    Google Scholar 

  121. A. Karimi, L. Miskovic, D. Bonvin, Iterative correlation-based controller tuning, International Journal of Adaptive Control and Signal Processing, 18 (8), 645–664, 2004.

    Article  MATH  Google Scholar 

  122. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization, Academic Press, San Diego, USA, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frucci, M., Perner, P., di Baja, G.S. (2008). Case-Based Reasoning for Image Segmentation by Watershed Transformation. In: Perner, P. (eds) Case-Based Reasoning on Images and Signals. Studies in Computational Intelligence, vol 73. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73180-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73180-1_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73178-8

  • Online ISBN: 978-3-540-73180-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics