Skip to main content

Potential Applications of Carbon Nanotubes

  • Chapter
Book cover Carbon Nanotubes

Part of the book series: Topics in Applied Physics ((TAP,volume 111))

Abstract

This review explores the state-of-the-art applications of various kindsof carbon nanotubes. We will address the uniqueness of nanotubes thatmakes them better than their competitors for specific applications. We willdiscuss several examples of the already existing commercial uses of nanotubesand then point out feasible nanotube applications for the near term (withinten years) and the long term (beyond ten years). In our discussions of theapplications, we will distinguish between the various kinds of nanotubesin play today, ranging from multiwall nanotubes having different degreesof perfection to the near-perfect molecular single-wall nanotubes. The lastdecade of research in this field points to several possible applications forthese materials; electronic devices and interconnects, field emission devices,electrochemical devices, such as supercapacitors and batteries, nanoscale sensors,electromechanical actuators, separation membranes, filled polymer composites,and drug-delivery systems are some of the possible applications that havebeen demonstrated in the laboratories. We further discuss the status of thisfield and point out the value-added applications that exist today versus therevolutionary applications that will ensue in the distant future. The opportunities,challenges and the major bottlenecks, including large-scale manufacturing fornanotube material, will be identified as we define the applications space fornanotubes. We will also consider some of the recent concerns regarding health,environment as well as handling and safety protocols for carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • R. H. Baughman, A. A. Zakhidov, W. A. Zakhidov: Carbon nanotubes – the route toward applications, Science 297, 787–792 (2002)

    Google Scholar 

  • B. I. Yakobson, R. E. Smalley: Fullerene nanotubes: {C1,000,000} and beyond, Am. Sci. 85, 324 (1997)

    Google Scholar 

  • P. M. Ajayan: Nanotubes from carbon, Chem. Rev. 99, 1787–1800 (1999)

    Google Scholar 

  • H. W. Kroto, J. R. Heath, S. C. O'Brien, S. C. Curl, R. E. Smalley: C60: buckministerfullerene, Nature 318, 162–163 (1985)

    Google Scholar 

  • M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain, H. A. Goldberg: Graphite Fibers and Filaments (Springer, Berlin, Heidelberg 1988)

    Google Scholar 

  • A. Oberlin, M. Endo, T. Koyama: Filamentous growth of carbon through benzene decomposition, J. Cryst. Growth 32, 335–349 (1976)

    Google Scholar 

  • R. Saito, G. Dresselhaus, M. S. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)

    Google Scholar 

  • S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)

    Google Scholar 

  • T. W. Ebbesen, P. M. Ajayan: Large scale synthesis of carbon nanotubes, Nature 358, 220 (1992)

    Google Scholar 

  • S. Iijima, T. Ichihashi: Single shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993)

    Google Scholar 

  • D. S. Bethune, C. H. Klang, M. S. deVries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt catalysed growth of carbon nanotubes with single atomic layer wells, Nature 363, 605–607 (1993)

    Google Scholar 

  • C. Dekker: Carbon nanotubes as molecular quantum wires, Phys. Today 52, 22–28 (1999)

    Google Scholar 

  • A. Javey: Ballistic carbon nanotube field-effect transistors, Nature 424, 654–657 (2003)

    Google Scholar 

  • P. L. McEuen, M. S. Fuhrer, H. K. Park: Single-walled carbon nanotube electronics, IEEE Transact. Nanotechnol. 1, 78–85 (2002)

    Google Scholar 

  • F. Kreup, A. P. Graham, M. Liebau, G. S. Duesberg, R. Seidel, E. Unger: Carbon nanotubes for interconnect applications, IEDM pp. 683–686 (2004)

    Google Scholar 

  • M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, M. C. Hersam: Sorting carbon nanotubes by electronic structure using density differentiation, Nature Nanotechnol. 1, 60–65 (2006)

    Google Scholar 

  • G. Y. Zhang: Selective etching of metallic carbon nanotubes by gas-phase reaction, Science 314, 974–977 (2006)

    Google Scholar 

  • B. Q. Wei, R. Vajtai, P. M. Ajayan: Reliability and current carrying capacity of carbon nanotubes, Appl. Phys. Lett. 79, 1172 (2001)

    Google Scholar 

  • {URL} \url{http://en.wikipedia.org/wiki/45nm}

    Google Scholar 

  • S. J. Tans, A. R. M. Verschueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)

    Google Scholar 

  • R. Martel, T. Schmidt, H. R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447 (1998)

    Google Scholar 

  • A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Reports, logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)

    Google Scholar 

  • P. G. Collins, M. S. Arnold, P. Avouris: Engineering carbon nanotubes and nanotube circuits using electrical breakdown, Science 292, 706–709 (2001)

    Google Scholar 

  • C. Klinke, J. B. Hannon, A. Afzali, P. Avouris: Field effect transistors assembled from functionalized nanotubes, Nano Lett. 6, 906–910 (2006)

    Google Scholar 

  • S. M. Rossnagel, T. S. Kaun: Alteration of {Cu} conductivity in the size effect regime, J. Vac. Sci. Technol. B 22, 240–247 (2004)

    Google Scholar 

  • C. T. White, T. N. Todorov: Quantum electronics – nanotubes go ballistic, Nature 411, 649–651 (2001)

    Google Scholar 

  • A. R. Naeemi, R. Sarvari, J. D. Meindl: Performance comparison between carbon nanotube and copper interconnects for gigascale integration ({GSI}), IEEE Electron. Device Lett. 26, 84–86 (2005)

    Google Scholar 

  • Y. M. Lin, J. Appenzeller, Z. Chen, Z. G. Chen, H. M. Cheng, P. Avouris: High-performance dual-gate carbon nanotube {FETs} with 40-nm gate length, IEEE Electron. Device L. 26, 823–825 (2005)

    Google Scholar 

  • A. Javey, J. Guo, D. B. Farmer, Q. Wang, E. Yenilmez, R. G. Gordon, M. Lundstrom, H. Dai: Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays, Nano Lett. 4, 1319–1322 (2004)

    Google Scholar 

  • A. Javey, H. S. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H. Dai: High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates, Nature Mater. 1, 241–246 (2002)

    Google Scholar 

  • Q. Cao, S. H. Hur, Z. T. Zhu, Y. G. Sun, C. J. Wang, M. A. Meitl, M. Shim, J. A. Rogers: Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics, Adv. Mater. 18, 304–309 (2006)

    Google Scholar 

  • Q. Cao, Z. T. Zhu, M. G. Lemaitre, M. G. Xia, M. S. J. A. Rogers: Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes, Appl. Phys. Lett. 88, 113511 (2006)

    Google Scholar 

  • Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler: Transparent, conductive carbon nanotube films, Science 305, 1273–1276 (2004)

    Google Scholar 

  • K. Kordás, G. Tόth, P. Moilanen, M. Kumpumäki, J. Vähäkangas, A. Uusimäki, R. Vajtai, P. M. Ajayan: Chip cooling with integrated carbon nanotube microfin architectures, Appl. Phys. Lett. 90, 123105 (2007)

    Google Scholar 

  • F. Leroux, K. Metenier, S. Gautier, E. Frackowiak, S. Bonnamy, F. Beguin: Electrochemical insertion of lithium in catalytic multi-walled carbon nanotubes, J. Power Sources 81, 317–322 (1999)

    Google Scholar 

  • A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, R. E. Smalley: Solid-state electrochemistry of the {Li} single wall carbon nanotube system, J. Electrochem. Soc. 147, 2845–2852 (2000)

    Google Scholar 

  • H. Shimoda, et al.: Lithium intercalation into opened single-wall carbon nanotubes: storage capacity and electronic properties, Phys. Rev. Lett. 88, 015502 (2002)

    Google Scholar 

  • W. Lu, D. D. L. Chung: Anodic performance of vapor-derived carbon filaments in lithium-ion secondary battery, Carbon 39, 493–496 (2001)

    Google Scholar 

  • B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, O. Zhou: Electrochemical intercalation of single-walled carbon nanotubes with lithium, Chem. Phys. Lett. 307, 153–157 (1999)

    Google Scholar 

  • M. Sato, A. Noguchi, N. Demachi, N. Oki, M. Endo: A mechanism of lithium storage in disordered carbons, Science 264, 556–558 (1994)

    Google Scholar 

  • M. Endo, C. Kim, K. Nishimura, T. Fujino, K. Miyashita: Recent development of carbon materials for {Li} ion batteries, Carbon 38, 183–197 (2000)

    Google Scholar 

  • M. Endo, Y. A. Kim, T. Hayashi, K. Nishimura, T. Matsushita, K. Miyashita, M. S. Dresselhaus: Vapor-grown carbon fibers ({VGCFs}) basic properties and battery application, Carbon 39, 1287–1297 (2001)

    Google Scholar 

  • B. E. Conway: Electrochemical Supercapacitors-Scientific Fundamentals and Technological Applications (Kluwer, New York 1999)

    Google Scholar 

  • C. Niu, E. K. Sickel, R. Hoch, D. Moy, H. Tennent: High power electrochemical capacitors based on carbon nanotube electrodes, Appl. Phys. Lett. 70, 1480–1482 (1997)

    Google Scholar 

  • K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee: Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes, Adv. Funct. Mater. 11, 387–392 (2001)

    Google Scholar 

  • Y. J. Kim, Y. A. Kim, T. Chino, H. Suezaki, M. Endo, M. S. Dresselhaus: Chemically modified multi-walled carbon nanotubes as an additive for super-capacitors, Small 2, 339–345 (2006)

    Google Scholar 

  • B. J. Landi, S. L. Castro, H. J. Ruf, C. M. Evans, S. G. Bailey, R. P. Raffaelle: {CdSe} quantum dot-single wall carbon nanotube complexes for polymeric solar cells, Sol. Energ. Mater. Sol. C. 87, 733–746 (2005)

    Google Scholar 

  • E. Kymakis, G. A. J. Amaratunga: Electrical properties of single-wall carbon nanotube-polymer composite films, J. Appl. Phys. 99, 084302 (2006)

    Google Scholar 

  • Z. H. Xu, Y. Wu, B. Hu, I. N. Ivanov, D. B. Geohegan: Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers, Appl. Phys. Lett. 87, 263118 (2005)

    Google Scholar 

  • A. Bachtold, M. S. Fuhrer, S. Plyasunov, M. Forero, E. H. Anderson, A. Zettl, P. L. McEuen: Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett. 84, 6082–6085 (2000)

    Google Scholar 

  • E. Kymakis, I. Alexandrou, G. A. J. Amaratunga: High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites, J. Appl. Phys. 93, 1764–1768 (2003)

    Google Scholar 

  • E. Kymakis, G. A. J. Amaratunga: Single-wall carbon nanotube/conjugated polymer photovoltaic devices, Appl. Phys. Lett. 80, 112–114 (2002)

    Google Scholar 

  • E. Kymakis, G. A. J. Amaratunga: Carbon nanotubes as electron acceptors in polymeric photovoltaics, Rev. Adv. Mater. Sci. 10, 300–305 (2005)

    Google Scholar 

  • S. Bhattacharyya, E. Kymakis, G. A. J. Amaratunga: Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices, Chem. Mater. 16, 4819–4823 (2004)

    Google Scholar 

  • E. Kymakis, G. A. J. Amaratunga: Photovoltaic cells based on dye-sensitisation of single-wall carbon nanotubes in a polymer matrix, Sol. Energ. Mater. Sol. C. 80, 465–472 (2003)

    Google Scholar 

  • G. M. A. Rahman, D. M. Guldi, R. Cagnoli, A. Mucci, L. Schenetti, L. Vaccari, M. Prato: Combining single wall carbon nanotubes and photoactive polymers for photoconversion, J. Am. Chem. Soc. 127, 10051–10057 (2005)

    Google Scholar 

  • R. P. Raffaelle, B. J. Landi, J. D. Harris, S. G. Bailey, A. Hepp: Carbon nanotubes for power applications, Mater. Sci. Eng. B-Solid 116, 233–243 (2005)

    Google Scholar 

  • A. J. Miller, R. A. Hatton, S. R. P. Silva: Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics, Appl. Phys. Lett. 89, 123115 (2006)

    Google Scholar 

  • A. J. Miller, R. A. Hatton, S. R. P. Silva: Interpenetrating multiwall carbon nanotube electrodes for organic solar cells, Appl. Phys. Lett. 89, 133117 (2006)

    Google Scholar 

  • S. B. Lee, T. Katayama, H. Kajii, H. Araki, K. Yoshino: Electrical and optical properties of conducting polymer-{C-60}-carbon nanotube system, Synth. Met. 121, 1591–1592 (2001)

    Google Scholar 

  • B. J. Landi, R. P. Raffaelle, S. L. Castro, S. G. Bailey: Single-wall carbon nanotube-polymer solar cells, Prog. Photovoltaics 13, 165–172 (2005)

    Google Scholar 

  • J. A. Rud, L. S. Lovell, J. W. Senn, Q. Qiao, J. T. Mcleskey: Water soluble polymer/carbon nanotube bulk heterojunction solar cells, J. Mater. Sci. 40, 1455–1458 (2005)

    Google Scholar 

  • L. Valentini, J. M. Kenny: Novel approaches to developing carbon nanotube based polymer composites: fundamental studies and nanotech applications, Polymer 46, 6715–6718 (2005)

    Google Scholar 

  • S. Spiekermann, G. Smestad, J. Kowalik, L. M. Tolbert, M. Grätzel: Poly(4-undecyl-2,2'-bithiophene) as a hole conductor in solid state dye sensitized titanium dioxide solar cells, Synth. Met. 121, 1603–1604 (2001)

    Google Scholar 

  • M. Gratzel: Photoelectrochemical cells, Nature 414, 338–344 (2001)

    Google Scholar 

  • W. Feng, Y. Feng, Z. Wu, A. Fujii, M. Ozaki, K. Yoshino: Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes, J. Phys.-Condens. Matter. 17, 4361–4368 (2005)

    Google Scholar 

  • C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, S. G. Louie: Quasiparticle energies, excitonic effects and optical absorption spectra of small-diameter single-walled carbon nanotubes, Appl. Phys. A-Mater. 78, 1129–1136 (2004)

    Google Scholar 

  • M. Ichida, S. Mizuno, Y. Tani, Y. Saito, A. Nakamura: Exciton effects of optical transitions in single-wall carbon nanotubes, J. Phys. Soc. Jpn. 68, 3131–3133 (1999)

    Google Scholar 

  • S. Kazaoui, N. Minami, B. Nalini, Y. Kim, K. Hara: Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films, J. Appl. Phys. 98, 084314 (2005)

    Google Scholar 

  • P. J. Britto, K. S. V. Santhanam, A. Rubio, A. Alonso, P. M. Ajayan: Improved charge transfer at carbon nanotube electrodes, Adv. Mater. 11, 154–157 (1999)

    Google Scholar 

  • G. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin: Carbon nanotube membranes for electrochemical energy storage and production, Nature 393, 346–349 (1999)

    Google Scholar 

  • M. Endo, Y. A. Kim, M. Ezaka, K. Osada, T. Yanagisawa, T. Hayashi, M. Terrones, M. S. Dresselhaus: Selective and efficient impregnation of metal nanoparticles on cup-stacked-type nanofibers, Nano Lett. 3, 723–726 (2003)

    Google Scholar 

  • T. Yoshitake, Y. Shimakawa, S. Kuroshima, H. Kimura, T. Ichihashi, Y. Kubo, D. Kasuya, K. Takahashi, F. Kohai, M. Yudasaka, S. Iijima: Preparation of fine platinum catalyst supported on single-wall carbon nanohorns for fuel cell application, Physica B 323, 124–126 (2002)

    Google Scholar 

  • C. Kim, Y. J. Kim, Y. A. Kim, T. Yanagisawa, M. Endo, M. S. Dresselhaus: {Pt}/{Ru} supported on {Cup}-stack typed carbon nanotubes as an electrode for fuel cell applications, J. Appl. Phys. 96, 5903–5905 (2004)

    Google Scholar 

  • C. Wang, M. Waje, X. Wang, J. M. Tang, R. C. Haddon, Y. S. Yan: Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Lett. 4, 345–348 (2004)

    Google Scholar 

  • M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson: Exceptionally high {Young's} modulus observed for individual carbon nanotubes, Nature 381, 678–681 (1996)

    Google Scholar 

  • M. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)

    Google Scholar 

  • H. D. Wagner, O. Lourie, Y. Feldman, R. Tenne: Stress – induced fragmentation of multiwall carbon nanoutbes in a polymer matrix, Appl. Phys. Lett. 72, 188–190 (1998)

    Google Scholar 

  • B. I. Yakobson: Mechanical relaxation and intramolecular plasticity in carbon nanotubes, Appl. Phys. Lett. 72, 918 (1998)

    Google Scholar 

  • A. Cao, D. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan: Super-compressible foamlike carbon nanotube films, Science 310, 1307–1310 (2005)

    Google Scholar 

  • P. M. Ajayan, L. S. Schadler, C. Giannaris, A. Rubio: Single-walled carbon nanotube-polymer composites: Strength and weakness, Adv. Mater. 12, 750 (2000)

    Google Scholar 

  • V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, P. M. Ajayan, M. N. Ghasemi-Nejhad: Multifunctional composites using reinforced laminae with carbon-nanotube forests, Nature Mater. 5, 457–462 (2006)

    Google Scholar 

  • J. Suhr, W. Zhang, P. M. Ajayan, N. A. Koratkar: Temperature-activated interfacial friction damping in carbon nanotube polymer composites, Nano Lett. 6, 219–223 (2006)

    Google Scholar 

  • L. S. Schadler, S. C. Giannaris, P. M. Ajayan: Load transfer in carbon nanotube epoxy composites, Appl. Phys. Lett. 73, 3842 (1998)

    Google Scholar 

  • A. Eitan, K. Y. Jian, D. Dukes, R. Andrews, L. S. Schadler: Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites, Chem. Mater. 15, 3198–3201 (2003)

    Google Scholar 

  • J. Suhr, N. Koratkar, P. Keblinski, P. M. Ajayan: Viscoelasticity in carbon nanotube composites, Nature Mater. 4, 134 (2005)

    Google Scholar 

  • R. F. Gibson, E. O. Ayorinde, Y.-F. Wen: Vibrations of carbon nanotubes and their composites: A review, Compos. Sci. Technol. 67, 1–28 (2007)

    Google Scholar 

  • B. Fragneaud, K. Masenelli-Varlot, A. González-Montiel, M. Terrones, J. Y. Cavaillé: Efficient coating of {N}-doped carbon nanotubes with polystyrene using atomic transfer radical polymerization, Chem. Phys. Lett. 419, 567 (2005)

    Google Scholar 

  • M. Dehonor, K. M. Varlot, A. G. Montiel, C. Gauthier, J. Y. Cavaillé, H. Terrones, M. Terrones: Nanotube brushes: Polystyrene grafted covalently on {CNx} nanotubes by nitroxide-mediated radical polymerization, Chem. Commun. 42, 5349–5351 (2005)

    Google Scholar 

  • M. Endo, S. Koyama, Y. Matsuda, T. Hayashi, Y. A. Kim: Thrombogenicity and blood coagulation of a micro-catheter prepared from carbon nanotube-nylon based composite, Nano Lett. 5, 101–106 (2005)

    Google Scholar 

  • S. Koyama, H. Haniu, K. Osaka, H. Koyama, N. Kuroiwa, M. Endo, Y. A. Kim, T. Hayashi: Medical application of carbon nanotube-filled nano-composites: microcatheter, Small 2, 1406–1411 (2006)

    Google Scholar 

  • P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K. J. Cho: Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection, Nano Lett. 3, 347–351 (2003)

    Google Scholar 

  • J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, H. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000)

    Google Scholar 

  • P. W. Barone, S. Baik, D. A. Heller, M. S. Strano: Near-infrared optical sensors based on single-walled carbon nanotubes, Nature Mater. 4, 86–92 (2005)

    Google Scholar 

  • E. S. Jeng, A. E. Moll, A. C. Roy, J. B. Gastala, M. S. Strano: Detection of {DNA} hybridization using the near-infrared band-gap fluorescence of single-walled carbon nanotubes, Nano Lett. 6, 371–375 (2006)

    Google Scholar 

  • D. A. Heller, E. S. Jeng, T. K. Yeung, B. M. Martinez, A. E. Moll, J. B. Gastala, M. S. Strano: Optical detection of {DNA} conformational polymorphism on single-walled carbon nanotubes, Science 311, 508–511 (2006)

    Google Scholar 

  • S. Peng, K. J. Cho: Chemical control of nanotube electronics, Nanotechnol. 11, 57–60 (2000)

    Google Scholar 

  • C. Y. Lee, S. Baik, J. Zhang, R. I. Masel, M. S. Strano: Charge transfer from metallic single-walled carbon nanotube sensor arrays, J. Phys. Chem. B 110, 11055–11061 (2006)

    Google Scholar 

  • S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, P. Avouris: Carbon nanotubes as {Schottky} barrier transistors, Phys. Rev. Lett. 89, 106801 (2002)

    Google Scholar 

  • K. Bradley, J. C. P. Gabriel, A. Star, G. Grüner: Short-channel effects in contact-passivated nanotube chemical sensors, Appl. Phys. Lett. 83, 3821–3823 (2003)

    Google Scholar 

  • J. Zhang, A. Boyd, A. Tselev, M. Paranjape, P. Barbara: Mechanism of NO2 detection in carbon nanotube field effect transistor chemical sensors, Appl. Phys. Lett. 88, 123112 (2006)

    Google Scholar 

  • Y. Lu, J. Li, J. Han, H. T. Ng, C. Binder, C. Partridge, M. Meyyappan: Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors, Chem. Phys. Lett. 391, 344–348 (2004)

    Google Scholar 

  • C. Staii, A. T. Johnson: {DNA}-decorated carbon nanotubes for chemical sensing, Nano Lett. 5, 1774–1778 (2005)

    Google Scholar 

  • R. J. Chen, N. R. Franklin, J. Kong, J. Cao, T. W. Tombler, Y. Zhang, H. Dai: Molecular photodesorption from single-walled carbon nanotubes, Appl. Phys. Lett. 79, 2258–2260 (2001)

    Google Scholar 

  • J. P. Novak, E. S. Snow, E. J. Houser, D. Park, J. L. Stepnowski, R. A. McGill: Nerve agent detection using networks of single-walled carbon nanotubes, Appl. Phys. Lett. 83, 4026–4028 (2003)

    Google Scholar 

  • E. S. Snow, F. K. Perkins, E. J. Houser, S. C. Badescu, T. L. Reinecke: Chemical detection with a single-walled carbon nanotube capacitor, Science 307, 1942–1945 (2005)

    Google Scholar 

  • E. S. Snow, F. K. Perkins: Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors, Nano Lett. 5, 2414–2417 (2005)

    Google Scholar 

  • J. Wang, M. Musameh: Carbon nanotube/teflon composite electrochemical sensors and biosensors, Anal. Chem. 75, 2075–2079 (2003.)

    Google Scholar 

  • M. Gao, L. M. Dai, G. G. Wallace: Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers, Electroanal. 15, 1089–1094 (2003)

    Google Scholar 

  • H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Y. Kuang: Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode, Anal. Biochem. 331, 89–97 (2004)

    Google Scholar 

  • S. Hrapovic, Y. Liu, K. B. Male, J. H. T. Luong: Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Anal. Chem. 76, 1083–1088 (2004)

    Google Scholar 

  • K. B. Male, S. Hrapovic, Y. Liu, W. Dashan, J. H. T. Luong: Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes, Anal. Chim. Acta 516, 35–41 (2004)

    Google Scholar 

  • H. Cai, X. Cao, Y. Jiang, P. He, Y. Fang: Carbon nanotube-enhanced electrochemical {DNA} biosensor for {DNA} hybridization detection, Anal. Bioanal. Chem. 375, 287–293 (2003)

    Google Scholar 

  • S. G. Wang, R. Wang, P. J. Sellin, Q. Zhang: {DNA} biosensors based on self-assembled carbon nanotubes, Biochem. Biophys. Res. Comm. 325, 1433–1437 (2004)

    Google Scholar 

  • K. Kerman, Y. Morita, Y. Takamura, M. Ozsoz, E. Tamiya: {DNA}-directed attachment of carbon nanotubes for enhanced label-free electrochemical detection of {DNA} hybridization, Electroanal. 16, 1667–1672 (2004)

    Google Scholar 

  • J. Wang, G. Liu, M. R. Jan: Ultrasensitive electrical biosensing of proteins and {DNA}: Carbon-nanotube derived amplification of the recognition and transduction events, J. Am. Chem. Soc. 126, 3010–3011 (2004)

    Google Scholar 

  • P. J. Britto, K. S. V. Santhanam, P. M. Ajayan: Carbon nanotube electrode for oxidation of dopamine, Bioelectroch. Bioener. 41, 121–125 (1996)

    Google Scholar 

  • A. Guiseppi-Elie, C. H. Lei, R. H. Baughman: Direct electron transfer of glucose oxidase on carbon nanotubes, Nanotechnol. 13, 559–564 (2002)

    Google Scholar 

  • Y.-D. Zhao, W.-D. Zhang, H. Chen, Q.-M. Luo: Direct electron transfer of glucose oxidase molecules adsorbed onto carbon nanotube powder microelectrode, Anal. Sci. 18, 939–941 (2002)

    Google Scholar 

  • J. Wang, M. Li, Z. Shi, N. Li, Z. Gu: Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes, Anal. Chem. 74, 1993–1997 (2002)

    Google Scholar 

  • M. Musameh, J. Wang, A. Merkoci, Y. Lin: Low-potential stable {NADH} detection at carbon-nanotube-modified glassy carbon electrodes, Electrochem. Commun. 4, 743–746 (2002)

    Google Scholar 

  • G. Li, J. M. Liao, G. Q. Hu, N. Z. Ma, P. J. Wu: Study of carbon nanotube modified biosensor for monitoring total cholesterol in blood, Biosens. Bioelectron. 20, 2140–2144 (2005)

    Google Scholar 

  • K. Wu, Y. Sun, S. Hu: Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode, Sens. Actuators B-Chem. 96, 658–662 (2003)

    Google Scholar 

  • K. Besteman, J. Lee, F. G. M. Wiertz, H. A. Heering, C. Dekker: Enzyme-coated carbon nanotubes as single-molecule biosensors, Nano Lett. 3, 727–730 (2003)

    Google Scholar 

  • R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. S. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, H. Dai: Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors, Proc. Nat. Acad. Sci. USA 100, 4984–4989 (2003)

    Google Scholar 

  • R. J. Chen, et al.: An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices, J. Am. Chem. Soc. 126, 1563–1568 (2004)

    Google Scholar 

  • A. Star, et al.: Label-free detection of {DNA} hybridization using carbon nanotube network field-effect transistors, Proc. Nat. Acad. Sci. USA 103, 921–926 (2006)

    Google Scholar 

  • X. W. Tang, et al.: Carbon nanotube {DNA} sensor and sensing mechanism, Nano Lett. 6, 1632–1636 (2006)

    Google Scholar 

  • A. Modi, N. Koratkar, E. Lass, B. Q. Wei, P. M. Ajayan: Miniaturized gas ionization sensors using carbon nanotubes, Nature 424, 171 (2003)

    Google Scholar 

  • P. Victor, et al.: Electromechanical properties of a macroscale carbon nanotube block, Appl. Phys. Lett. (2007) in review

    Google Scholar 

  • R. H. Baughman, C. Cui, A. A. Zhakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. D. Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340 (1999)

    Google Scholar 

  • M. W. Hamberg, et al.: An electrochemical micro actuator, in Micro Electro Mechanical Systems, Proc. IEEE 106 (1995)

    Google Scholar 

  • A. G. Rinzler, et al.: Unraveling nanotubes: Field emission from an atomic wire, Science 269, 1550–1553 (1995)

    Google Scholar 

  • W. A. D. Heer, A. Chatelain, D. Ugarte: A carbon nanotube field emission electron source, Science 270, 1179–1180 (1995)

    Google Scholar 

  • Y. Saito, S. Uemura: Field emission from carbon nanotubes and its applications to electron sources, Carbon 38, 169–182 (2000)

    Google Scholar 

  • S. S. Fan, M. G. Chaplind, N. R. Franklin, T. W. Tombler, A. M. Cassel, H. Dai: Self oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512–514 (1999)

    Google Scholar 

  • Y. Saito, S. Uemura, K. Hamaguchi: Cathode ray tube lighting elements with carbon nanotube field emitters, Jpn. J. Appl. Phys. 37, L346–L348 (1998)

    Google Scholar 

  • W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim: Fully sealed high brightness carbon nanotube field emission display, Appl. Phys. Lett. 75, 3219–3231 (1999)

    Google Scholar 

  • J. M. Bonard, J. P. Salvetat, T. Stockli, W. A. Deheer, L. Forro, A. Chatelain: Field emission from single-wall carbon nanotube film, Appl. Phys. Lett. 73, 918–920 (1998)

    Google Scholar 

  • H. Kurachi, S. Uemura, J. Yotani, T. Nagasako, H. Yamada, H. Ezaki, T. Maesoba, R. Loutfy, A. Moravsky, T. Nakazawa, Y. Saito: in Proc. 21st Int. Display Res. Conf./8th Int. Display Workshops: Soc. Inf. Display (2001) pp. 1245–1248

    Google Scholar 

  • K. Seko, J. Kinoshita, Y. Saito: In situ transmission electron microscopy of field-emitting bundles of double wall carbon nanotubes, Jpn. J. Appl. Phys. 44, L743–L745 (2005)

    Google Scholar 

  • Y.-W. Son, S. Oh, J. Ihm, S. Han: Field emission properties of double-wall carbon nanotubes, Nanotechnol. 16, 125–128 (2005)

    Google Scholar 

  • T. Hiraoka, T. Yamada, K. Hata, D. N. Futaba, H. Kurachi, S. Uemura, M. Yumura, S. Iijima: Synthesis of single and double walled carbon nanotubes forests on conducting metal foils, J. Am. Chem. Soc. 128, 13338–13339 (2006)

    Google Scholar 

  • J.-C. Charlier, M. Terrones, M. Baxendale, V. Meunier, T. Zacharia, N. L. Rupesinghe, W. K. Hsu, N. Grobert, H. Terrones, G. A. J. Amaratunga: Enhanced electron field emission in {B}-doped carbon nanotubes, Nano Lett. 2, 1191 (2002)

    Google Scholar 

  • D. Golberg, P. S. Dorozhkin, Y. Bando, Z. C. Dong, C. C. Tang, Y. Uemura, N. Grobert, M. Reyes-Reyes, H. Terrones, M. Terrones: Structure, transport and field-emission properties of compound nanotubes: {CNx} vs. {BNCx} (x < 0.1), Appl. Phys. A-Mater. 76, 499 (2003)

    Google Scholar 

  • M. Doytcheva, M. Kaiser, M. Reyes-Reyes, M. Terrones, N. de Jonge: Electron emission from individual nitrogen-doped multi-walled carbon nanotubes, Chem. Phys. Lett. 396, 126 (2004)

    Google Scholar 

  • D. A. Heller, et al.: Optical detection of {DNA} conformational polymorphism on single-walled carbon nanotubes, Science 311, 508–511 (2006)

    Google Scholar 

  • P. Cherukuri, et al.: Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells, J. Am. Chem. Soc. 126, 15638–15639 (2004)

    Google Scholar 

  • P. Cherukuri, et al.: Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence, Proc. Nat. Acad. Sci. USA 103, 18882–18886 (2006)

    Google Scholar 

  • D. A. Heller, et al.: Single-walled carbon nanotube spectroscopy in live cells: Towards long-term labels and optical sensors, Adv. Mater. 17, 2793–2799 (2005)

    Google Scholar 

  • C. Klumpp, et al.: Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics, BBA-Biomembranes 1758, 404–412 (2006)

    Google Scholar 

  • D. Pantarotto, et al.: Translocation of bioactive peptides across cell membranes by carbon nanotubes, Chem. Commun. 2004, 16–17 (2004)

    Google Scholar 

  • N. W. S. Kam, et al.: Nanotube molecular transporters: Internalization of carbon nanotube-protein conjugates into mammalian cells, J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Google Scholar 

  • D. Cai, et al.: Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing, Nature Method. 2, 449–454 (2005)

    Google Scholar 

  • Q. Lu, et al.: {RNA} polymer translocation with single-walled carbon nanotubes, Nano Lett. 4, 2473–2477 (2004)

    Google Scholar 

  • N. W. S. Kam, H. J. Dai: Carbon nanotubes as intracellular protein transporters: Generality and biological functionality, J. Am. Chem. Soc. 127, 6021–6026 (2005)

    Google Scholar 

  • W. Wu, et al.: Targeted delivery of amphotericin {B} to cells by using functionalized carbon nanotubes, Angew. Chem. Int. Edit. 44, 6358–6362 (2005)

    Google Scholar 

  • D. Pantarotto, et al.: Functionalized carbon nanotubes for plasmid {DNA} gene delivery, Angew. Chem. Int. Edit. 43, 5242–5246 (2004)

    Google Scholar 

  • N. W. S. Kam, Z. Liu, H. J. Dai: Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of {siRNA} and potent gene silencing, J. Am. Chem. Soc. 127, 12492–12493 (2005)

    Google Scholar 

  • Zheng, et al.: Structure-based carbon nanotube sorting by sequence-dependent {DNA} assembly, Science 302, 1545–1548 (2003)

    Google Scholar 

  • M. I. H. Panhuis, et al.: Characterization of an interaction between functionalized carbon nanotubes and an enzyme, J. Nanosci. Nanotechnol. 3, 209–213 (2003)

    Google Scholar 

  • R. J. Chen, et al.: Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization, J. Am. Chem. Soc. 123, 3838–3839 (2001)

    Google Scholar 

  • J. Liu, et al.: Fullerene pipes, Science 280, 1253–1256 (1998)

    Google Scholar 

  • H. Hu, et al.: Chemically functionalized carbon nanotubes as substrates for neuronal growth, Nano Lett. 4, 507–511 (2004)

    Google Scholar 

  • Y. Liu, et al.: Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of {DNA}, Angew. Chem. Int. Ed. 44, 4782–4785 (2005)

    Google Scholar 

  • G. Pastorin, et al.: Double functionalisation of carbon nanotubes for multimodal drug delivery, Chem. Commun. 11, 1182–1184 (2006)

    Google Scholar 

  • R. Singh, et al.: Binding and condensation of plasmid {DNA} onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors, J. Am. Chem. Soc. 127, 4388–4396 (2005)

    Google Scholar 

  • C. Salvador-Morales, et al.: Complement activation and protein adsorption by carbon nanotubes, Mol. Immunol. 43, 193–201 (2006)

    Google Scholar 

  • N. W. S. Kam, et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Nat. Acad. Sci. USA 102, 11600–11605 (2005)

    Google Scholar 

  • C. F. Lopez, et al.: Understanding nature's design for a nanosyringe, Proc. Nat. Acad. Sci. USA 101, 4431–4434 (2004)

    Google Scholar 

  • I. Lynch: Are there generic mechanisms governing interactions between nanoparticles and cells? {Epitope} mapping the outer layer of the protein-material interface, Physica A 373, 511–520 (2007)

    Google Scholar 

  • B. D. Chithrani, A. A. Ghazani, W. C. W. Chan: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett. 6, 662–668 (2006)

    Google Scholar 

  • N. W. S. Kam, Z. A. Liu, H. J. Dai: Carbon nanotubes as intracellular transporters for proteins and {DNA}: An investigation of the uptake mechanism and pathway, Angew. Chem. Int. Ed. 45, 577–581 (2006)

    Google Scholar 

  • F. Osaki, et al.: A quantum dot conjugated sugar ball and its cellular uptake on the size effects of endocytosis in the subviral region, J. Am. Chem. Soc. 126, 6520–6521 (2004)

    Google Scholar 

  • Gao, H. J., W. D. Shi, L. B. Freund: Mechanics of receptor-mediated endocytosis, Proc. Nat. Acad. Sci. USA 102, 9469–9474 (2005)

    Google Scholar 

  • A. T. Woolley, C. Guillemette, C. L. Cheung, D. E. Housman, C. M. Lieber: Direct haplotyping of kiobase size {DNA} using carbon nanotube probes, Nature Biotechnol. 18, 760–763 (2000)

    Google Scholar 

  • J. H. Hafner, C. L. Cheung, A. T. Woolley, C. M. Lieber: Structural and functional imaging with carbon nanotube {AFM} probes-review, Prog. Biophys. Mol. Bio. 77, 73–110 (2001)

    Google Scholar 

  • H. Dai, N. Franklin, J. Han: Exploiting the properties of carbon nanotubes for nanolithography, Appl. Phys. Lett. 73, 1508–1510 (1998)

    Google Scholar 

  • B. J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L. G. Bachas: Aligned multiwalled carbon nanotube membranes, Science 303, 62–65 (2004)

    Google Scholar 

  • J. K. Holt, H. G. Park, Y. M. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, O. Bakajin: Fast mass transport through sub-2-nanometer carbon nanotubes, Science 312, 1034–1037 (2006)

    Google Scholar 

  • A. Srivastava, O. N. Srivastava, S. Talapatra, R. Vajtai, P. M. Ajayan: Carbon nanotube filters, Nature Mater. 3, 610–614 (2004)

    Google Scholar 

  • K. Kordas, et al.: Inkjet printing of electrically conductive patterns of carbon nanotubes, Small 2, 1021–1025 (2006)

    Google Scholar 

  • L. M. Ericson, et al.: Macroscopic, neat, single-walled carbon nanotube fibers, Science 305, 1447–1450 (2004)

    Google Scholar 

  • Y.-L. Li, I. A. Kinloch, A. H. Windle: Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis, Science 304, 276–278 (2004)

    Google Scholar 

  • J. Wei, H. Zhu, D. Wu, B. Wei: Carbon nanotube filaments in household light bulbs, Appl. Phys. Lett. 84, 4869–4871 (2004)

    Google Scholar 

  • A. Cao, V. P. Veedu, X. Li, Z. Yao, M. N. Ghasemi-Nejhad, P. M. Ajayan: Multifunctional brushes made from carbon nanotubes, Nature Mater. 4, 540–545 (2005)

    Google Scholar 

  • B. Yurdumakan, N. R. Raravikar, P. M. Ajayan, A. Dhinojwala: Synthetic gecko foot-hairs from multiwalled carbon nanotubes, Chem. Commun. 30, 3799–3801 (2005)

    Google Scholar 

  • A. B. Dalton, et al.: Continuous carbon nanotube composite fibers: Properties, potential applications and problems, J. Mater. Chem. 14, 1 (2004)

    Google Scholar 

  • L. Sun, F. Banhart, A. V. Krasheninnikov, J. A. Rodriguez-Manzo, M. Terrones, P. M. Ajayan: Carbon nanotubes as high-pressure cylinders and nanoextruders, Science 312, 1199–1202 (2006)

    Google Scholar 

  • P. M. Ajayan, O. Stephan, P. Redlich, C. Colliex: Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostructures, Nature 375, 564 (1995)

    Google Scholar 

  • F. S. Ou, M. M. Shaijumon, L. Ci, D. Benicewicz, R. Vajtai, P. M. Ajayan: Multisegmented one-dimensional hybrid structures of carbon nanotubes and metal nanowires, App. Phys. Lett. 89, 243122 (2006)

    Google Scholar 

  • G. W. Meng, Y. J. Jung, A. Cao, R. Vajtai, P. M. Ajayan: Controlled fabrication of hierarchically branched nanopores, nanotubes and nanowires, Proc. Nat. Acad. Sci. 102, 7074 (2005)

    Google Scholar 

  • N. Sano: Low cost synthesis of singlewalled carbon nanohorns using the arc in water method using gas injection, J. Phys. D: Appl. Phys. 37, L17–L20 (2004)

    Google Scholar 

  • A. A. Shvedova, V. Castranova, E. R. Kisin, D. Schwegler-Berry, A. R. Murray, V. Z. Gandelsman, A. Maynard, P. Baron: Exposure to carbon nanoutbe material: assessment of nanotube cytoxicity using human keratinocyte cell, J. Toxicol. Environ. Health 66, 1909–1926 (2003)

    Google Scholar 

  • C. W. Lam, J. T. James, R. McCluskey, R. L. Hunter: Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation, Toxicol. Sci. 77, 126–134 (2004)

    Google Scholar 

  • D. B. Warheit, B. R. Laurence, K. L. Reed, D. H. Roach, G. A. Reynolds, T. R. Webb: Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats, Toxicol. Sci. 77, 117–125 (2004)

    Google Scholar 

  • A. D. Maynard, O. P. A. Baron, M. Foley, A. A. Shvedova, E. R. Kisin, V. Castranova: Exposure to carbon nanotube material: aerosol release during the handling of unrefined single walled carbon nanotube material, J. Toxicol. Environ. Heath 67, 87–107 (2004)

    Google Scholar 

  • S. Koyama, M. Endo, Y. A. Kim, T. Hayashi, T. Yanagisawa, K. Osaka, H. Koyama, H. Haniu, N. Kuroiwa: Role of systemic {T}-cells and histopathological aspects after subcutaneous implantation of various carbon nanotubes in mice, Carbon 44, 1079–1092 (2006)

    Google Scholar 

  • G. Jia, H. Wang, L. Yan, X. Wang, R. Pei, T. Yan, Y. Zhao, X. Guo: Cytoxicity of carbon nanomaterials: Single wall nanotube, multi-wall nanotube, and fullerene, Environ. Sci. Technol. 39, 1378–1383 (2005)

    Google Scholar 

  • D. Cui, F. Tian, C. Ozkan, M. Wang, H. Gao: Effect of single wall carbon nanotubes on human {HEK293} cells, Toxicol. Lett. 155, 73–85 (2005)

    Google Scholar 

  • Y. Sato, K. Shibata, H. Kataoka, S. Ogino, F. Bunshi, A. Yokoyama, K. Tamura, T. Akasaka, M. Uo, K. Motomiya, B. Jeyadevan, R. Hitakeyama, F. Watari, K. Tohji: Mol. BioSyst. 1, 142–145 (2005)

    Google Scholar 

  • R. F. Service: Science policy: Priorities needed for nano-risk research and development, Science 314, 45 (2006)

    Google Scholar 

  • D. X. Cui, et al.: Effect of single wall carbon nanotubes on human {HEK293} cells, Toxicol. Lett. 155, 73–85 (2005)

    Google Scholar 

  • S. K. Manna, et al.: Single walled carbon nanotube induces oxidative stress and actiaves nuclear transcription factor – kappa {B} in human keratinocytes, Nano Lett. 55, 1676–1684 (2005)

    Google Scholar 

  • V. E. Kagan, et al.: Direct and indirect effects of single walled carbon nanotubes on {RAW} 264.7 macrophages: Role of iron, Toxicol. Lett. 165, 88–100 (2006)

    Google Scholar 

  • C. M. Sayes, et al.: Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro, Toxicol. Lett. 161, 135–142 (2006)

    Google Scholar 

  • H. Dumortier, et al.: Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells, Nano Lett. 6, 1522–1528 (2006)

    Google Scholar 

  • N. W. S. Kam, et al.: Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction, Proc. Nat. Acad. Sci. USA 102, 11600–11605 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morinobu Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Endo, M., Strano, M.S., Ajayan, P.M. (2007). Potential Applications of Carbon Nanotubes. In: Jorio, A., Dresselhaus, G., Dresselhaus, M.S. (eds) Carbon Nanotubes. Topics in Applied Physics, vol 111. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72865-8_2

Download citation

Publish with us

Policies and ethics