Skip to main content

Production of Antibodies in Plants: Approaches and Perspectives

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 332))

Advances in molecular biology, immunology, and plant biotechnology have changed the paradigm of plant as a food source to so-called plant bioreactor to produce valuable recombinant proteins. These include therapeutic or diagnostic monoclonal antibodies, vaccines, and other biopharmaceutical proteins. The plant as a bioreactor for the production of therapeutic proteins has several advantages, which include the lack of animal pathogenic contaminants, low cost of production, and ease of agricultural scale-up compared to other currently available systems. Thus, plants are considered to be a potential alternative to compete with other systems such as bacteria, yeast, or insect and mammalian cell culture. Plant production systems, particularly therapeutic antibodies, are very attractive to pharmaceutical companies to produce the antibodies in demand. Currently, we have successfully developed a plant system for production of anti-rabies monoclonal antibody and anti-colorectal cancer monoclonal antibody. The effective plant production system for recombinant antibodies requires the appropriate plant expression machinery with optimal combination of transgene expression regulatory elements, control of posttranslational protein processing, and efficient purification methods for product recovery. However, there are several limitations that have to be resolved to establish the efficient plant system for antibody production. Here, we discuss the approaches and perspectives in plant systems to produce monoclonal antibody.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakker H, Bardor M, Molthoff JW, Gomord V, Elbers I, Stevens LH, Jordi W, Lommen A, Faye L, Lerouge P, Bosch D (2001) Galactose-extended glycans of antibodies produced by transgenic plants. Proc Natl Acad Sci USA 98:2899–2904

    Article  PubMed  CAS  Google Scholar 

  • Baum TJ, Hiatt A, Parrott WA, Pratt LH, Hussey RS (1996) Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Molecular Plant-Microbe Interaction 9:382–387

    CAS  Google Scholar 

  • Boothe JG, Saponja JA, Parmenter DL (1997) Molecular farming in plants: oilseeds as vehicles for the production of pharmaceutical proteins. Drug Develop Res 42:172–181

    Article  CAS  Google Scholar 

  • Borisjuk N V, Borisjuk LG, Logendra S, Petersen F, Gleba Y, Raskin I (1999) Production of recombinant proteins in plant root exudates. Nat Biotechnol 17:466–469

    Article  PubMed  CAS  Google Scholar 

  • Brockmann EC, Cooper M, Stromsten N, Vehniainen M, Saviranta P (2005) Selecting for antibody scFV fragments with improved stability using phage display with denaturation under reducing conditions. J Immunol Methods 296:159–170

    Article  PubMed  CAS  Google Scholar 

  • Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2:706–713

    Article  PubMed  CAS  Google Scholar 

  • Burton DR, Barbas CFr (1994) Human antibodies from combinatorial libraries. Adv Immunol 57:191–280

    Article  PubMed  CAS  Google Scholar 

  • Cabanes-Macheteau M, Fitchette-Laine AC, Loutelier-Bourhis C, Lange C, Vine ND, Ma JK, Lerouge P, Faye L (1999) N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9:365–372

    Article  PubMed  CAS  Google Scholar 

  • Carter P (2001) Bispecific human IgG by design. J Immunol Methods 248:7–15

    Article  PubMed  CAS  Google Scholar 

  • Casadevall A, Dadachova E, Pirofski L (2004) Passive antibody therapy for infectious diseases. Nat Microbiol 2:695–702

    Article  CAS  Google Scholar 

  • Chadd HE, Chamow SM (2001) Therapeutic antibody expression technology. Curr Opin Biotechnol 12:188–194

    Article  PubMed  CAS  Google Scholar 

  • Chargelegue D, Vine ND, van Dolleweerd CJ, Drake PM, Ma JK (2000) A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res 9:187–194

    Article  PubMed  CAS  Google Scholar 

  • Colby DW, Garg P, Holden T, Chao G, Webster JM, Messer A, Ingram VM, Wittrup KD (2004) Development of a human light chain variable domain (VL) intracellular antibody specific for the amino terminus of huntingtin via yeast surface display. J Mol Biol 342:901–912

    Article  PubMed  CAS  Google Scholar 

  • Coloma MJ, Trinh RK, Martinez AR, Morrison SL (1999) Position effects of variable region carbohydrate on the affinity and in vivo behavior of an anti-(1-->6) dextran antibody. J Immunol 162:2162–2170

    PubMed  CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobu-lins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  PubMed  CAS  Google Scholar 

  • D'Aoust M-A, Lerouge P, Busse U, Bilodeau P, Trepanier S, Gomord V, Faye L, Vezina L-P (2004) Efficient and reliable production of pharmaceutical in alfalfa. In: Fischer R, Schillberg S (eds) Molecular Farming: Plant-made Pharmaceuticals and Technical Protein. Wiley, Weinheim, pp. 1–11

    Google Scholar 

  • Daniell H (2002a) Medical molecular pharming: expression of antibodies, biopharmaceuticals and edible vaccines via the chloroplast genome. In: V. I.K (ed) Plant Biotechnology 2002 and Beyond, Plant Biotechnology 2002 and Beyond. Kluwer Academic Publishers, Orlando, pp. 371–376

    Google Scholar 

  • Drake PMW, Chargelegue D, Vine ND, Van Dolleweerd CJ, Obregon P, Ma JK-C (2002) Transgenic plants expressing antibodies: a model for phytoremediation. FASEB J 16:1855–1860

    Article  PubMed  CAS  Google Scholar 

  • Duering K (1988) Wundinduzierbare und Sekretion von T4 Lysozym und monoklonalen Antikorpern in Nicotiana tabcum. PhD thesis, Universität Koln, FRG

    Google Scholar 

  • Fischer R, Schumann D, Zimmermann S, Drossard J, Sack M, Schillberg S (1999) Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur J Biochem 262:810–816

    Article  PubMed  CAS  Google Scholar 

  • Fitchette-Laine AC, Gomord V, Chekkafi A, Faye L (1994) Distribution of xylosylation and fucosylation in the plant Golgi apparatus. Plant J 5:673–682

    Article  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnnet S (2005) Magnifection-a new platform for expressing recom-binant vaccines in plants. Vaccine 23:2042–2048

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Sourrouille C, Fitchette A-C, Bardor M, Pagny S, Lerouge P, Faye L (2004) Production and glycosylation of plant-made pharmaceuticals: the antibodies as a challenge. Plant Biotechnol J 2:83–100

    Article  PubMed  CAS  Google Scholar 

  • Harris M (2004) Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol 5:292–302

    Article  PubMed  CAS  Google Scholar 

  • Herlyn DM, Steplewski Z, Herlyn MF, Koprowski H (1980) Inhibition of growth of colorectal carcinoma in nude mice by monoclonal antibody. Cancer Res 40:717–721

    PubMed  CAS  Google Scholar 

  • Herlyn M, Steplewski Z, Herlyn D, Koprowski H (1986) CO17-1A and related monoclonal antibodies: Their production and characterization. Hybridoma 5:3–S10

    PubMed  Google Scholar 

  • Hiatt A, Caffertey R, Bowdish K (1989) Production of antibodies in transgenic plants. Nature 342:76–78

    Article  PubMed  CAS  Google Scholar 

  • Houghton AN, Scheinberg DA (2000) Monoclonal antibody therapies—a ‘constant’ threat to cancer. Nat Med 6:373–374

    Article  PubMed  CAS  Google Scholar 

  • Hull AK, Criscuolo CJ, Mett V, Groen H, Steeman W, Westra H, Chapman G, Legutki B, Baillie L, Yusibov V (2005) Human-derived, plant-produced monoclonal antibody for the treatment of anthrax. Vaccine 23:2082–2086

    Article  PubMed  CAS  Google Scholar 

  • Jobling SA, Jarman C, Teh MM, Holmberg N, Blake C, Verhoeyen ME (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol 21:77–80

    Article  PubMed  CAS  Google Scholar 

  • Juwied M, Neumann R, Paik C, MJ, P-B, Sato J, van Osdol W, Weinstein JN (1992) Micropharmacology of monoclonal antibodies in solid tumors: direct experimental evidence for a binding site barrier. Cancer Res 52:5144–5153

    Google Scholar 

  • Kathuria S, Sriraman R, Nath R, Sack M, Pal R, Artsaenko O, Talwar GP, Fischer R, Finnern R (2002) Efficacy of plant-produced recombinant antibodies against HCG. Hum Reprod 17:2054–2061

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Koprowski, H (2005) Plant biopharming of monoclonal antibodies. Virus Res 111:93–100

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Steplewski Z, Glogowska M, Koprowski H (2005) Inhibition of tumor growth by plant-derived mAb. Proc Natl Acad Sci USA 102:7026–7030

    Article  PubMed  CAS  Google Scholar 

  • Ko K, Tekoah Y, Rudd PM, Harvey DJ, Dwek RA, Spitsin S, Hanlon CA, Rupprecht C, Dietzschold B, Golovkin M, Koprowski H (2003) Function and glycosylation of plant-derived antiviral monoclonal antibody. Proc Natl Acad Sci USA 100:8013–8018

    Article  PubMed  CAS  Google Scholar 

  • Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Stemmer C, Altmann F, Hoffmann A, Kopriva S, Gorr G, Reski R, Decker EL (2004) Targeted knockouts of Physcomitrella lacking plant-specific immunogenic N-glycans. Plant Biotechnol J 2:517–523

    Article  PubMed  CAS  Google Scholar 

  • Koprowski H, Black J (1952) Studies on chick-embryo-adapted rabies virus. J Immunol 72:79–84

    Google Scholar 

  • Koprowski H, Yusibov V (2001) The green revolution: plants as heterologous expression vectors. Vaccine 19:2735–2741

    Article  PubMed  CAS  Google Scholar 

  • Lang J, Simanjuntak GH, Soerjosembodo S, Koesharyono C (1998) Suppressant effect of human or equine rabies immunoglobulins on the immunogenicity of post-exposure rabies vaccination under the 2-1-1 regimen: a field trial in Indonesia. MAS054 Clinical Investigator Group. Bull World Health Organ 76:491–495

    PubMed  CAS  Google Scholar 

  • Le Gall F, Bove J-M, Garnier M (1998) Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (mollicute) and its expression in Escherichia coli and tobacco plants. Appl Environ Microbiol 64:4566–4572

    Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Hiatt A, Hein M, Vine ND, Wang F, Stabila P, van Dolleweerd C, Mostov K, Lehner T (1995) Generation and assembly of secretory antibodies in plants. Science 268:716–719

    Article  PubMed  CAS  Google Scholar 

  • Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB (1995) Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med 1:237–243

    Article  PubMed  CAS  Google Scholar 

  • Marillonnnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23:718–723

    Article  Google Scholar 

  • Matusuuchi L, Sharon J, Morrison SL (1981) An analysis of heavy chain glycospeptides of hybri-doma antibodies: correlation between antibody specificity and sialic acid content. J Immunol 127:2188–2190

    Google Scholar 

  • Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442

    Article  PubMed  CAS  Google Scholar 

  • McCall AM, Shahied L, Amoroso AR, Horak EM, Simmons HH, Nielson U, Adams GP, Schier R, Marks JD, Wiener LM (2001) Increasing the affinity for tumor antigen enhances bispecific antibody cytotoxicity. J Immunol 166:112–117

    Google Scholar 

  • McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S, Levy R (1999) Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco. Proc Natl Acad Sci USA 96:703–708

    Article  PubMed  CAS  Google Scholar 

  • Miroshinichenko S, Tripp J, Nieden U, Neumann D, Conrad U, Manteuffel R (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41:269–281

    Article  Google Scholar 

  • Montefiori DC (2005) Neutralizing antibodies take a swipe at HIV in vivo. Nat Med 11:593–594

    Article  PubMed  CAS  Google Scholar 

  • Nosanchuk JD, Steenbergen JN, Shi L, Deepe GSJ, Casadevall A (2003) Antibodies to a cell surface histone-like protein protect against Histoplasma capsulatum. J Clin Invest 112:1164–1175

    PubMed  CAS  Google Scholar 

  • Nowakowski A, Wang C, Powers DB, Amersdorfer P, Smith TJ, Montgomery VA, Sheridan R, Blake R, Smith LA, Marks JD (2002) Potent neutralization of botulinum neurotoxin by recom-binant oligoclonal antibody. Proc Natl Acad Sci USA 99:11346–11350

    Article  PubMed  CAS  Google Scholar 

  • Nuttall J, Ma JK-C, Frigerio L (2005) A functional antibody lacking N-linked glycans is efficiently folded, assembled and secreted by tobacco mesophyll protoplasts. Plant Biotechnol J 3:497–504

    Article  PubMed  CAS  Google Scholar 

  • Nuttall J, Vine ND, Hadlington JL, Drake P, Frigerio L, Ma JK-C (2002) ER-resident chaperone interactions with recombinant antibodies in transgenic plants. FEBS 269:6042–6051

    CAS  Google Scholar 

  • Peeters K, De Wilde C, Depicker A (2001) Highly efficient targeting and accumulation of a F(ab) fragment within the secretory pathway and apoplast of Arabidopsis thaliana. Eur J Biochem 268:4251–4260

    Article  PubMed  CAS  Google Scholar 

  • Prosniak M, Faber M, Hanlon CA, Rupprecht C, Hooper DC, Dietzschold B (2003) Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for post-exposure prophylaxis of rabies. J Infect Dis 187:30386–30389

    Google Scholar 

  • Schier R, Balint RF, McCall A, Apell G, Larrick JW, Marks JD (1996) Identification of functional and structural amino-acid residues by parsimonious mutagenesis. Gene 169:147–155

    Article  PubMed  CAS  Google Scholar 

  • Schiermeyer A, Dorfmuller S, Schinkel H (2004) Production of pharmaceutical proteins in plants and plant cell suspension cultures.

    Google Scholar 

  • Schillberg S, Zimmermann S, Zhan M-Y, Fischer R (2001) Antibody-based resistance to plant pathogens. Transgenic Res 10:1–12

    Article  PubMed  CAS  Google Scholar 

  • Schlesinger JJ, Foltzer M, Chapman S (1993) The Fc portion of antibody to yellow fever virus NS1 is a determinant of protection against YF encephalitis in mice. Virology 192:132–141

    Article  PubMed  CAS  Google Scholar 

  • Schumacher CL, Ertl HC, Koprowski H, Dietzschold B (1992) Inhibition of immune responses against rabies virus by monoclonal antibodies directed against rabies virus antigens. Vaccine 10:754–760

    Article  PubMed  CAS  Google Scholar 

  • Senveno M, Bardor M, Paccalet T (2004) Glycoprotein sialylation in plants? Nat Biotechnol 22:1351–1352

    Article  Google Scholar 

  • Seon JH, Szarka S, Moloney M (2002) A unique strategy for recovering recombinant proteins from molecular farming: affinity capture on engineered oilbodies. J Plant Biotechnol 4:95–101

    Google Scholar 

  • Shah MM, Fujiyama K, Flynn CR, Joshi L (2003) Presence of sialylated endogenous glyconju-gates in plant cells. Nat Biotechnol 21:1470–1471

    Article  PubMed  CAS  Google Scholar 

  • Shields RL, Lai J, Keck, R, O'Connell, L.Y, Hong, K, Meng, Y.G, Weikert, S.H.A, Presta, L (2002) Lack of Fucose on human IgG1 N-linked Oligosaccharide improves binding to human FcgRIII and antibody-dependent cellular toxicity. J Biol Chem 277:26733–26740

    Article  PubMed  CAS  Google Scholar 

  • Smith G, Walmsley A, Polkinghorne I (1997) Plant-derived immunocontraceptive vaccines. Reprod Fertil Dev 9:85–89

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Sack M, Fischer R, Christou P (2002) Plantibodies: applications, advantages and bottlenecks. Curr Opin Biotechnol 13:161–166

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Sack M, Nicholson L, Fischer R, Christou P (2005) Recent progress in plantibody technology. Curr Pharmaceut Des 11:2439–2457

    Article  CAS  Google Scholar 

  • Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R (2000) Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42:583–590

    Article  PubMed  CAS  Google Scholar 

  • Tachibana H, Shirahata S, Murakami H (1992) Generation of specificity-variant antibodies by alteration of carbohydrate in light chain of human monoclonal antibodies. Biochem Biophys Res Commun 189:625–632

    Article  PubMed  CAS  Google Scholar 

  • Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C, Manrique A, Huber M, Rehr M, Oxenius A, Weber R, Stiegler G, Vcelar B, Katinger H, Aceto L, Gunthard HF (2005) Delay of HIV-1 rebound after cessation of antiretoviral therapy through passive transfer of human neutralizing antibodies. Nat Med 11:615–622

    Article  PubMed  CAS  Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuro-blastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17:176–180

    Article  PubMed  CAS  Google Scholar 

  • Vaccaro C, Zhou J, Ober RJ, Ward E.S (2005) Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23:1283–1288

    Article  PubMed  CAS  Google Scholar 

  • Valdes R, Gomez L, Padilla S, Brito J, Reyes B, Alvarez T, Mendoza O, Herrera O, Ferro W, Pujol M, Leal V, Linares M, Hevia Y, Garcia C, Mila L, Garcia O, Sanchez R, Acosta A, Geada D, Paez R, Luis Vega J, Borroto C (2003) Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem Biophys Res Commun 308:94–100

    Article  PubMed  CAS  Google Scholar 

  • Vaquero C, Sack M, Schuster F, Finnern R, Drossard J, Schumann D, Reimann A, Fischer R (2002) A carcinoembryonic antigen-specific diabody produced in tobacco. FASEB J 16:408–410

    PubMed  CAS  Google Scholar 

  • Verch T, Yusibov V, Koprowski H (1998) Expression and assembly of a full-length monoclonal antibody in plants using a plant virus vector. J Immunological Methods 220:69–75

    Article  CAS  Google Scholar 

  • Vietta ES, Uhr JW (1994) Monoclonal antibodies as agonists: an expanded role for their use in cancer therapy. Cancer Res 54:5301–5309

    Google Scholar 

  • Voss A, Niersbach M, Hain R, Hirsch HJ, Liao YC, Kreuzaler F, Fischer R (1995) Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Molecular Breeding 1:39–50

    Article  CAS  Google Scholar 

  • Vrain TC (1999) Engineering natural and synthetic resistance for nematode management. J Nematol 31:424–436

    PubMed  CAS  Google Scholar 

  • Vuist WM, Levy R, Maloney DG (1994) Lymphoma regression induced by monoclonal anti-idi-otypic antibodies correlates with their ability to induce Ig signal transduction and is not prevented by tumor expression of high levels of bcl-2 protein. Blood 83:899–906

    PubMed  CAS  Google Scholar 

  • Weiner LM, Carter P (2005) Tunable antibodies. Nat Biotechnol 23:556–557

    Article  PubMed  CAS  Google Scholar 

  • Wenderoth I, von Schaewen A (2000) Isolation and characterization of plant- N-acetyl glucosami-nyltransferase I (GntI) cDNA sequences. Functional analyses in the Arabidopsis cgl mutant and in antisense plants. Plant Physiol 123:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR (1994) Making antibodies by phage display technology. Annu Rev Immunol 12:433–455

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Morrison SL (1998) Effect of C2-associated carbohydrate structure on Ig effector function: studies with chimeric mouse-human IgG1 antibodies in glycosylation mutants of Chinese hamster ovary cells. J Immunol 160:3393–3402

    PubMed  CAS  Google Scholar 

  • Wright A, Tao MH, Kabat EA, Morrison SL (1991) Antibody variable region glycosylation: position effects on antigen binding and carbohydrate structure. EMBO J 10:2717–2123

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ko, K., Brodzik, R., Steplewski, Z. (2009). Production of Antibodies in Plants: Approaches and Perspectives. In: Karasev, A.V. (eds) Plant-produced Microbial Vaccines. Current Topics in Microbiology and Immunology, vol 332. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70868-1_4

Download citation

Publish with us

Policies and ethics