Skip to main content

Structural and Biochemical Aspects of Tandem GAF Domains

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 191))

Abstract

The GAF domain is a small-molecule-binding-domain (SMBD) identified in >7400 proteins. However, mostly the ligands are unknown. Here we mainly deal with regulatory N-terminal tandem GAF domains, GAF-A and GAF-B, of four mammalian phosphodiesterases (PDEs) and of two cyanobacterial adenylyl cyclases (ACs) which bind cyclic nucleotides. These tandem GAFs are preceded by N-terminal sequences of variable lengths and a function of their own. In mammals, GAF domains are found only in cyclic nucleotide PDEs 2, 5, 6, 10, and 11. cAMP is the ligand for phosphodiesterase 10, cGMP for the others. Two cyanobacterial ACs, CyaB1 and 2, carry regulatory cAMP-binding tandem GAF domains which are similar in sequence to the mammalian ones. These tandem GAF domains have a prominent NKFDE motif which contributes to ligand binding in an as yet unknown manner. Contradicting structures (parallel vs. antiparallel) are available for the tandem GAF domains of PDE 2 and AC CyaB2. In addition, the structures of phosphodiesterase 5 and 10 GAF monomers with bound ligands have been solved. In all instances, cyclic nucleotide binding involves specific protein-ligand interactions within a tightly closed binding pocket and minimal solvent exposure of the ligand. The PDE tandem GAF domains can functionally substitute for the tandem of the cyanobacterial AC CyaB1; e.g. cGMP-regulation is grafted onto the AC using tandem GAFs from PDEs 2, 5 and 11. Studies of GAF domain-regulated PDEs are hampered by the identities of regulator and substrate molecules. Using AC CyaB1 as a reporter which uses ATP as a substrate solves this issue and makes the tandem GAF domains of mammalian PDEs available for detailed kinetic and mechanistic studies. In addition, drugs which potentially act on PDE regulatory domains may be assayed with such a novel test system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aravind L, Ponting CP (1997) The GAF domain: an evolutionary link between diverse phototrans-ducing proteins. Trends Biochem Sci 22:458–459

    Article  PubMed  CAS  Google Scholar 

  • Bruder S, Linder JU, Martinez SE, Zheng N, Beavo JA, Schultz JE (2005) The cyanobacterial tandem GAF domains from the cyaB2 adenylyl cyclase signal via both cAMP-binding sites. Proc Natl Acad Sci U S A 102:3088–3092

    Article  PubMed  CAS  Google Scholar 

  • Bruder S, Schultz A, Schultz JE (2006) Characterization of the tandem GAF domain of human phosphodiesterase 5 using a cyanobacterial adenylyl cyclase as a reporter enzyme. J Biol Chem 281:19969–19976

    Article  PubMed  CAS  Google Scholar 

  • Corbin JD, Turko IV, Beasley A, Francis SH (2000) Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding ac tivities. Eur J Biochem 267:2760–2767

    Article  PubMed  CAS  Google Scholar 

  • Fink TL, Francis SH, Beasley A, Grimes KA, Corbin JD (1999) Expression of an active, monomeric catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase (PDE5). J Biol Chem 274:34613–34620

    Article  PubMed  CAS  Google Scholar 

  • Francis SH, Bessay EP, Kotera J, Grimes KA, Liu L, Thompson WJ, Corbin JD (2002) Phospho- rylation of isolated human Phosphodiesterase-5 regulatory domain induces an apparent confor-mational change and increases cGMP binding affinity. J Biol Chem 277:47581–47587

    Article  PubMed  CAS  Google Scholar 

  • Granovsky AE, Natochin M, McEntaffer RL, Haik TL, Francis SH, Corbin JD, Artemyev NO (1998) Probing domain functions of chimeric PDE6alpha'/PDE5 cGMP-phosphodiesterase. J Biol Chem 273:24485–24490

    Article  PubMed  CAS  Google Scholar 

  • Gross-Langenhoff M, Hofbauer K, Weber J, Schultz A, Schultz JE (2006) cAMP is a ligand for the tandem GAF domain of human phosphodiesterase 10 and cGMP for the tandem GAF domain of phosphodiesterase 11. J Biol Chem 281:2841–2846

    Article  PubMed  CAS  Google Scholar 

  • Gross-Langenhoff M, Stenzl A, Altenberend F, Schultz A, Schultz JE (2008) The properties of the phosphodiesterase 11A4 GAF domains are regulated by modi-fications in its N-terminal domain. FEBS J 275:1643–1650

    Article  PubMed  CAS  Google Scholar 

  • Handa N, Mizohata E, Kishishita S, Toyama M, Morita S, Uchikubo-Kamo T, Akasaka R, Omori K, Kotera J, Terada T, Shirouzu M, Yokoyama S (2008) Crystal Structure of the GAF-B Domain from Human Phosphodiesterase 10A Complexed with Its Ligand, cAMP. J Biol Chem 283:19657–19664

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer K, Schultz A, Schultz JE (2008) Functional Chimeras of the Phosphodiesterase 5 and 10 Tandem GAF Domains. J Biol Chem 283:25164–25170

    Article  PubMed  CAS  Google Scholar 

  • Ho YS, Burden LM, Hurley JH (2000) Structure of the GAF domain, a ubiquitous signaling motif and a new class of cyclic GMP receptor. EMBO J 19:5288–5299

    Article  PubMed  CAS  Google Scholar 

  • Kanacher T, Schultz A, Linder JU, Schultz JE (2002) A GAF-domain-regulated adenylyl cyclase from Anabaena is a self-activating cAMP switch. EMBO J 21:3672–3680

    Article  PubMed  CAS  Google Scholar 

  • Linder JU, Bruder S, Schultz A, Schultz JE (2007) Changes in purine specificity in tandem GAF chimeras from cyanobacterial cyaB1 adenylate cyclase and rat phosphodiesterase 2. FEBS J 274:1514–1523

    Article  PubMed  CAS  Google Scholar 

  • Martinez SE, Beavo JA, Hol WG (2002a) GAF domains: two-billion-year-old molecular switches that bind cyclic nucleotides. Mol Interv 2:317–323

    Article  CAS  Google Scholar 

  • Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, Hol WG, Beavo JA (2002b) The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A 99:13260–13265

    Article  CAS  Google Scholar 

  • Martinez SE, Bruder S, Schultz A, Zheng N, Schultz JE, Beavo JA, Linder JU (2005) Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization. Proc Natl Acad Sci U S A 102:3082–3087

    Article  PubMed  CAS  Google Scholar 

  • McAllister-Lucas LM, Haik TL, Colbran JL, Sonnenburg WK, Seger D, Turko IV, Beavo JA, Francis SH, Corbin JD (1995) An essential aspartic acid at each of two allosteric cGMP-binding sites of a cGMP-specific phosphodiesterase. J Biol Chem 270:30671–30679

    Article  CAS  Google Scholar 

  • Mou H, Cote RH (2001) The catalytic and GAF domains of the rod cGMP phosphodiesterase (PDE6) heterodimer are regulated by distinct regions of its inhibitory gamma subunit. J Biol Chem 276:27527–27534

    Article  PubMed  CAS  Google Scholar 

  • Mou H, Grazio HJ III, Cook TA, Beavo JA, Cote RH (1999) cGMP binding to noncatalytic sites on mammalian rod photoreceptor phosphodiesterase is regulated by binding of its gamma and delta subunits. J Biol Chem 274:18813–18820

    Article  PubMed  CAS  Google Scholar 

  • Okada D, Asakawa S (2002) Allosteric activation of cGMP-specific, cGMP-binding phosphodi-esterase (PDE5) by cGMP. Biochemistry 41: 9672–9679

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Feil R, Hofmann F, Beavo JA (2002) Regulation of cGMP- specific Phosphodiesterase (PDE5) phoshorylation in smooth muscle cells. J Biol Chem 277: 3310–3317

    Article  PubMed  CAS  Google Scholar 

  • Rybalkin SD, Rybalkina IG, Shimizu-Albergine M, Tang XB, Beavo JA (2003) PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J 22:469–478

    Article  PubMed  CAS  Google Scholar 

  • Sinha SC, Wetterer M, Sprang SR, Schultz JE, Linder JU (2005) Origin of asymmetry in adenylyl cyclases: structures of Mycobacterium tuberculosis Rv1900c. EMBO J 24:663–673

    Article  PubMed  CAS  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA (1999) Isolation and characterization of a dual-substrate phos-phodiesterase gene family: PDE10A. Proc Natl Acad Sci U S A 96:7071–7076

    Article  PubMed  CAS  Google Scholar 

  • Sopory S, Balaji S, Srinivasan N, Visweswariah SS (2003) Modeling and mutational analysis of the GAF domain of the cGMP-binding, cGMP-specific phosphodiesterase, PDE5. FEBS Lett 539:161–166

    Article  PubMed  CAS  Google Scholar 

  • Steegborn C, Litvin TN, Levin LR, Buck J, Wu H (2005) Bicarbonate activation of adenylyl cyclase via promotion of catalytic active site closure and metal recruitment. Nat Struct Mol Biol 12: 32–37

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Tesmer JJ, Gilman AG, Sprang SR (1997) Crystal structure of the adenylyl cyclase activator Gsalpha. Science 278:1943–1947

    Article  PubMed  CAS  Google Scholar 

  • Tesmer JJG, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR (1999) Two-metal-ion catalysis in adenylyl cyclase. Science 285:756–760

    Article  PubMed  CAS  Google Scholar 

  • Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU (2005) The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science 308:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Thomas MK, Francis SH, Corbin JD (1990) Substrate- and kinase-directed regulation of phospho-rylation of a cGMP-binding phosphodiesterase by cGMP. J Biol Chem 265:14971–14978

    PubMed  CAS  Google Scholar 

  • Turko IV, Haik TL, McAllister-Lucas LM, Burns F, Francis SH, Corbin JD (1996) Identification of key amino acids in a conserved cGMP-binding site of cGMP-binding phosphodiesterases. A putative NKXnD motif for cGMP binding. J Biol Chem 271:22240–22244

    Article  PubMed  CAS  Google Scholar 

  • Turko IV, Francis SH, Corbin JD (1998a) Binding of cGMP to both allosteric sites of cGMP-binding cGMP-specific phosphodiesterase (PDE5) is required for its phosphorylation. Biochem J 329(Pt 3):505–510

    CAS  Google Scholar 

  • Turko IV, Francis SH, Corbin JD (1998b) Potential roles of conserved amino acids in the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 273:6460–6466

    Article  CAS  Google Scholar 

  • Wu AY, Tang XB, Martinez SE, Ikeda K, Beavo JA (2004) Molecular determinants for cyclic nucleotide binding to the regulatory domains of phosphodiesterase 2A. J Biol Chem 279: 37928–37938

    Article  PubMed  CAS  Google Scholar 

  • Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T, Omori K (2000) Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem 275:31469–31479

    Article  PubMed  CAS  Google Scholar 

  • Zhang G, Liu Y, Ruoho AE, Hurley JH (1997) Structure of the adenylyl cyclase catalytic core. Nature 386:247–253

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Corbin JD, Francis SH (2004) Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. Mol Pharmacol 65:267–278

    Article  PubMed  CAS  Google Scholar 

  • Zoraghi R, Bessay EP, Corbin JD, Francis SH (2005) Structural and functional features in human PDE5A1 regulatory domain that provide for allosteric cGMP binding, dimerization, and regulation. J Biol Chem 280:12051–12063

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Schultz, J.E. (2009). Structural and Biochemical Aspects of Tandem GAF Domains. In: Schmidt, H.H.H.W., Hofmann, F., Stasch, JP. (eds) cGMP: Generators, Effectors and Therapeutic Implications. Handbook of Experimental Pharmacology, vol 191. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68964-5_6

Download citation

Publish with us

Policies and ethics