Skip to main content

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 179))

Abstract

TRPC6 is a Ca2+-permeable non-selective cation channel expressed in brain, smooth muscle containing tissues and kidney, as well as in immune and blood cells. Channel homomers heterologously expressed have a characteristic doubly rectifying current-voltage relationship and are six times more permeable for Ca2+ than for Na+. In smooth muscle tissues, however, Na+ influx and activation of voltage-gated calcium channels by membrane depolarization rather than Ca2+ elevation by TRPC6 channels is the driving force for contraction. TRPC6 channels are directly activated by the second messenger diacylglycerol (DAG) and regulated by specific tyrosine or serine phosphorylation. Extracellular Ca2+ has inhibitory effects, while Ca2+/calmodulin acting from the intracellular side has potentiator effects on channel activity. Given its specific expression, TRPC6 is likely to play a number of physiological roles. Studies with TRPC6 -/- mice suggest a role for the channel in the regulation of vascular and pulmonary smooth muscle contraction. TRPC6 was identified as an essential component of the slit diaphragm architecture of kidney podocytes. Other functions in immune and blood cells, as well as in brain and in smooth muscle-containing tissues such as stomach, colon and myometrium, remain elusive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bandyopadhyay BC, Swaim WD, Liu X, Redman RS, Patterson RL, Ambudkar IS (2005) Apical localization of a functional TRPC3/TRPC6-Ca2+-signaling complex in polarized epithelial cells. Role in apical Ca2+ influx. J Biol Chem 280:12908–12916

    Article  PubMed  CAS  Google Scholar 

  • Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278:31709–31716

    Article  PubMed  CAS  Google Scholar 

  • Beech DJ, Muraki K, Flemming R (2004) Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. J Physiol 559:685–706

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Dietrich A, Kawasaki B, Zhu MX (2003) Multiple interactions between TRPCs and IP3Rs: TRPC3-interacting domains of IP3R serve to identify TRPCs as components of CCE channels; yet, IP3R activation does not activate TRPC3 channels. Nova Acta Leopold 89(336):61–67

    Google Scholar 

  • Bonaventure P, Guo H, Tian B, Liu X, Bittner A, Roland B, Salunga R, Ma XJ, Kamme F, Meurers B, Bakker M, Jurzak M, Leysen JE, Erlander MG (2002) Nuclei and subnuclei gene expression profiling in mammalian brain. Brain Res 943:38–47

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L (1997) Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein. J Biol Chem 272:29672–29680

    Article  PubMed  CAS  Google Scholar 

  • Boulay G, Brown DM, Qin N, Jiang M, Dietrich A, Zhu MX, Chen Z, Birnbaumer M, Mikoshiba K, Birnbaumer L (1999) Modulation of Ca(2+) entry by polypeptides of the inositol 1,4,5-trisphosphate receptor (IP3R) that bind transient receptor potential (TRP): evidence for roles of TRP and IP3R in store depletion-activated Ca(2+) entry. Proc Natl Acad Sci U S A 96:14955–14960

    Article  PubMed  CAS  Google Scholar 

  • Buess M, Engler O, Hirsch HH, Moroni C (1999) Search for oncogenic regulators in an autocrine tumor model using differential display PCR: identification of novel candidate genes including the calcium channel mtrp6. Oncogene 18:1487–1494

    Article  PubMed  CAS  Google Scholar 

  • Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G (2004) Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein-coupled receptor activation. J Biol Chem 279:7241–7246

    Article  PubMed  CAS  Google Scholar 

  • Chu X, Tong Q, Cheung JY, Wozney J, Conrad K, Mazack V, Zhang W, Stahl R, Barber DL, Miller BA (2004) Interaction of TRPC2 and TRPC6 in erythropoietin modulation of calcium influx. J Biol Chem 279:10514–10522

    Article  PubMed  CAS  Google Scholar 

  • Corteling RL, Li S, Giddings J, Westwick J, Poll C, Hall IP (2004) Expression of transient receptor potential C6 and related transient receptor potential family members in human airway smooth muscle and lung tissue. Am J Respir Cell Mol Biol 30:145–154

    Article  PubMed  CAS  Google Scholar 

  • D’Esposito M, Strazzullo M, Cuccurese M, Spalluto C, Rocchi M, D’Urso M, Ciccodicola A (1998) Identification and assignment of the human transient receptor potential channel 6 gene TRPC6 to chromosome 11q21–>q22. Cytogenet Cell Genet 83:46–47

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Gollasch M, Chubanov V, Mederos y Schnitzler M, Dubrovska G, Herz U, Renz H, Gudermann T, Birnbaumer L (2003a) Studies on TRPC6 deficient mice reveal its non-redundant role in the regulation of smooth muscle tone. Naunyn Schmiedebergs Arch Pharmacol 367:238

    Google Scholar 

  • Dietrich A, Mederos y Schnitzler M, Emmel J, Kalwa H, Hofmann T, Gudermann T (2003b) N-linked protein glycosylation is a major determinant for basal TRPC3 and TRPC6 channel activity. J Biol Chem 278:47842–47852

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos y Schnitzler M, Kalwa H, Storch U, Gudermann T (2005a) Functional characterization and physiological relevance of the TRPC3/6/7 subfamily of cation channels. Naunyn Schmiedebergs Arch Pharmacol 371:257–265

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Kalwa H, Rost BR, Gudermann T (2005b) The diacylglycerol-sensitive TRPC3/6/7 subfamily of cation channels: functional characterization and physiological relevance. Pflügers Arch 451:72–80

    Article  PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft FC, Gudermann T, Birnbaumer L (2005c) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25:6980–6989

    Article  PubMed  CAS  Google Scholar 

  • Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95:922–929

    Article  PubMed  CAS  Google Scholar 

  • Elsaesser R, Montani G, Tirindelli R, Paysan J (2005) Phosphatidyl-inositide signaling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur J Neurosci 21:2692–2700

    Article  PubMed  Google Scholar 

  • Estacion M, Li S, Sinkins WG, Gosling M, Bahra P, Poll C, Westwick J, Schilling WP (2004) Activation of human TRPC6 channels by receptor stimulation. J Biol Chem 279:22047–22056

    Article  PubMed  CAS  Google Scholar 

  • Estacion M, Sinkins WG, Jones SW, Applegate MA, Schilling WP (2006) TRPC6 forms non-selective cation channels with limited Ca2+ permeability. J Physiol 572:359–377

    Article  PubMed  CAS  Google Scholar 

  • Garcia RL, Schilling WP (1997) Differential expression of mammalian TRP homologues across tissues and cell lines. Biochem Biophys Res Commun 239:279–283

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins WG, Schilling WP (2002) Selective association of TRPC channel subunits in rat brain synaptosomes. J Biol Chem 277:48303–48310

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins W, Keightley A, Kinter M, Schilling WP (2005a) Proteomic analysis of TRPC5-and TRPC6-binding partners reveals interaction with the plasmalemmal Na(+)/K(+)-ATPase. Pflugers Arch 451:87–98

    Article  PubMed  CAS  Google Scholar 

  • Goel M, Sinkins WG, Zuo CD, Estacion M, Schilling WP (2005b) Identification and localization of TRPC channels in rat kidney. Am J Physiol Renal Physiol 290:F1241–F1252

    Article  PubMed  Google Scholar 

  • Gudermann T (2005) A new TRP to kidney disease. Nat Genet 37:663–664

    Article  PubMed  CAS  Google Scholar 

  • Gudermann T, Mederos y Schnitzler M, Dietrich A (2004) Receptor-operated cation entry-more than esoteric terminology? Sci STKE 243:pe35

    Google Scholar 

  • Halaszovich C R, Zitt C, Jüngling E, Lückhoff A (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275:37423–37428

    Article  PubMed  CAS  Google Scholar 

  • Hassock SR, Zhu MX, Trost C, Flockerzi V, Authi KS (2002) Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 100:2801–2811

    Article  PubMed  CAS  Google Scholar 

  • Hisatsune C, Kuroda Y, Nakamura K, Inoue T, Nakamura T, Michikawa T, Mizutani A, Mikoshiba K (2004) Regulation of TRPC6 channel activity by tyrosine phosphorylation. J Biol Chem 279:18887–18894

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G (1999) Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397:259–263

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2000) Transient receptor potential channels as molecular substrates of receptor-mediated cation entry. J Mol Med 78:14–25

    Article  PubMed  CAS  Google Scholar 

  • Hofmann T, Schaefer M, Schultz G, Gudermann T (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99:7461–7466

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88:325–332

    PubMed  CAS  Google Scholar 

  • Jung S, Strotmann R, Schultz G, Plant TD (2002) TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol 282:C347–359

    PubMed  CAS  Google Scholar 

  • Kawasaki BT, Liao Y, Birnbaumer L (2006) Role of Src in C3 transient receptor potential channel function and evidence for a heterogeneous makeup of receptor-and store-operated Ca2+ entry channels. Proc Natl Acad Sci U S A 103:335–340

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Saffen D (2005) Activation of M1 muscarinic acetylcholine receptors stimulates the formation of a multiprotein complex centered on TRPC6 channels. J Biol Chem 280:32035–32047

    Article  PubMed  CAS  Google Scholar 

  • Kriz W (2005) TRPC6—a new podocyte gene involved in focal segmental glomerulosclerosis. Trends Mol Med 11:527–530

    Article  PubMed  CAS  Google Scholar 

  • Krizaj D (2005) Compartmentalization of calcium entry pathways in mouse rods. Eur J Neurosci 22:3292–3296

    Article  PubMed  Google Scholar 

  • Lessard CB, Lussier MP, Cayouette S, Bourque G, Boulay G (2005) The overexpression of presenilin2 and Alzheimer’s-disease-linked presenilin2 variants influences TRPC6-enhanced Ca2+ entry into HEK293 cells. Cell Signal 17:437–445

    Article  PubMed  CAS  Google Scholar 

  • Li S, Gosling M, Poll C (2005a) Determining the functional role of TRPC channels in primary cells. Pflugers Arch 451:43–52

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Jia YC, Cui K, Li N, Zheng ZY, Wang YZ, Yuan XB (2005b) Essential role of TRPC channels in the guidance of nerve growth cones by brain-derived neurotrophic factor. Nature 434:894–898

    Article  PubMed  CAS  Google Scholar 

  • Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, Sham JS (2004) Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95:496–505

    Article  PubMed  CAS  Google Scholar 

  • Lu PJ, Hsu AL, Wang DS, Chen CS (1998) Phosphatidylinositol 3,4,5-trisphosphate triggers platelet aggregation by activating Ca2+ influx. Biochemistry 37:9776–9783

    Article  PubMed  CAS  Google Scholar 

  • Lussier MP, Cayouette S, Lepage PK, Bernier CL, Francoeur N, St-Hilaire M, Pinard M, Boulay G (2005) MxA, amember of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. J Biol Chem 280:19393–19400

    Article  PubMed  CAS  Google Scholar 

  • Montell C (2001) Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Sci STKE 90:RE1

    Google Scholar 

  • Okada T, Inoue R, Yamazaki K, Maeda A, Kurosaki T, Yamakuni T, Tanaka I, Shimizu S, Ikenaka K, Imoto K, Mori Y (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274:27359–27370

    Article  PubMed  CAS  Google Scholar 

  • Otsuka Y, Sakagami H, Owada Y, Kondo H (1998) Differential localization of mRNAs for mammalian trps, presumptive capacitative calcium entry channels, in the adult mouse brain. Tohoku J Exp Med 185:139–146

    Article  PubMed  CAS  Google Scholar 

  • Owsianik G, Talavera K, Voets T, Nilius B (2005) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685–717

    Article  Google Scholar 

  • Reiser J, Polu KR, Moller CC, Kenlan P, Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C, McGee M, Sugimoto H, Brown D, Kalluri R, Mundel P, Smith PL, Clapham DE, Pollak MR (2005) TRPC6 is a glomerular slit diaphragm-associated channel required for normal renal function. Nat Genet 37:739–744

    Article  PubMed  CAS  Google Scholar 

  • Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R (2004) Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561:415–432

    Article  PubMed  CAS  Google Scholar 

  • Soboloff J, Spassova M, Xu W, He LP, Cuesta N, Gill DL (2005) Role of endogenous TRPC6 channels in Ca2+ signal generation in A7r5 smooth muscle cells. J Biol Chem 280:39786–39794

    Article  PubMed  CAS  Google Scholar 

  • Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE (2003) Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 278:39014–39019

    Article  PubMed  Google Scholar 

  • Thebault S, Flourakis M, Vanoverberghe K, Vandermoere F, Roudbaraki M, Lehen’kyi V, Slomianny C, Beck B, Mariot P, Bonnal JL, Mauroy B, Shuba Y, Capiod T, Skyrma R, Prevaraskaya N (2006) Different role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells. Cancer Res 66:2038–2047

    Article  PubMed  CAS  Google Scholar 

  • Trebak M, Vazquez G, Bird GS, Putney JW Jr (2003) The TRPC3/6/7 subfamily of cation channels. Cell Calcium 33:451–461

    Article  PubMed  CAS  Google Scholar 

  • Tseng PH, Lin HP, Hu H, Wang C, Zhu MX, Chen CS (2004) The canonical transient receptor potential 6 channel as a putative phosphatidylinositol 3,4,5-trisphosphate-sensitive calcium entry system. Biochemistry 43:11701–11708

    Article  PubMed  CAS  Google Scholar 

  • Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    Article  PubMed  CAS  Google Scholar 

  • Winn MP, Conlon PJ, Lynn KL, Farrington MK, Creazzo T, Hawkins AF, Daskalakis N, Kwan SY, Ebersviller S, Burchette JL, Pericak-Vance MA, Howell DN, Vance JM, Rosenberg PB (2005) A mutation in the TRPC6 cation channel causes familial focal segmental glomerulosclerosis. Science 308:1801–1804

    Article  PubMed  CAS  Google Scholar 

  • Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, Yuan JX (2003) PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. Am J Physiol Cell Physiol 284:C316–330

    PubMed  CAS  Google Scholar 

  • Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX (2004) Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci U S A 101:13861–13866

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Saffen D (2001) Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. Molecular structures and functional characterization. J Biol Chem 276:13331–13339

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Tang J, Tikunova S, Johnson JD, Chen Z, Qin N, Dietrich A, Stefani E, Birnbaumer L, Zhu MX (2001) Activation of Trp3 by inositol 1,4,5-trisphosphate receptors through displacement of inhibitory calmodulin from a common binding domain. Proc Natl Acad Sci U S A 98:3168–3173

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietrich, A., Gudermann, T. (2007). TRPC6. In: Flockerzi, V., Nilius, B. (eds) Transient Receptor Potential (TRP) Channels. Handbook of Experimental Pharmacology, vol 179. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34891-7_7

Download citation

Publish with us

Policies and ethics