Skip to main content

Can Neural Network Constraints in GP Provide Power to Detect Genes Associated with Human Disease?

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3449))

Abstract

A major goal of human genetics is the identification of susceptibility genes associated with common, complex diseases. Identifying gene-gene and gene-environment interactions which comprise the genetic architecture for a majority of common diseases is a difficult challenge. To this end, novel computational approaches have been applied to studies of human disease. Previously, a GP neural network (GPNN) approach was employed. Although the GPNN method has been quite successful, a clear comparison of GPNN and GP alone to detect genetic effects has not been made. In this paper, we demonstrate that using NN evolved by GP can be more powerful than GP alone. This is most likely due to the confined search space of the GPNN approach, in comparison to a free form GP. This study demonstrates the utility of using GP to evolve NN in studies of the genetics of common, complex human disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kardia, S.L.R.: Context-dependent genetic effects in hypertension. Curr. Hypertens. Reports 2, 32–38 (2000)

    Article  Google Scholar 

  2. Moore, J.H., Williams, S.M.: New strategies for identifying gene-gene interactions in hypertension. Ann. Med. 34, 88–95 (2002)

    Article  Google Scholar 

  3. Kooperberg, C., Ruczinski, I., LeBlanc, M.L., Hsu, L.: Sequence Analysis using Logic Regression. Genetic Epidemiology S1, 626–631 (2001)

    Google Scholar 

  4. Zhu, J.: Classification of gene microarrays by penalized logistic regression. Biostatistics 5, 427–443 (2003)

    Article  Google Scholar 

  5. Tahri-Daizadeh, N., Tregouet, D.A., Nicaud, V., Manuel, N., Cambien, F., Tiret, L.: Automated detection of informative combined effects in genetic association studies of complex traits. Genome Res. 8, 1952–1960 (2003)

    Google Scholar 

  6. Nelson, M., Kardia, S.L.R., Ferrell, R.E., Sing, C.F.: A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res. 11, 458–470 (2001)

    Article  Google Scholar 

  7. Culverhouse, R., Klein, T., Shannon, W.: Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol. 27, 141–152 (2004)

    Article  Google Scholar 

  8. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)

    Article  Google Scholar 

  9. Hahn, L.W., Ritchie, M.D., Moore, J.H.: Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003)

    Article  Google Scholar 

  10. Ritchie, M.D., Hahn, L.W., Moore, J.H.: Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Gen. Epi. 24, 150–157 (2003)

    Article  Google Scholar 

  11. Marinov, M., Weeks, D.: The complexity of linkage analysis with neural networks. Hum. Hered. 51, 169–176 (2001)

    Article  Google Scholar 

  12. Lucek, P., Hanke, J., Reich, J., Solla, S.A., Ott, J.: Multi-locus nonparametric linkage analysis of complex trait loci with neural networks. Hum. Hered. 48, 275–284 (1998)

    Article  Google Scholar 

  13. Koza, J.R., Rice, J.P.: Genetic generation of both the weights and architecture for a neural network, vol. II. IEEE Press, Los Alamitos (1991)

    Google Scholar 

  14. Gruau, F.C.: Cellular encoding of genetic neural networks. Master’s thesis Ecole Normale Superieure de Lyon, pp. 1–42 (1992)

    Google Scholar 

  15. Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H.: Optimization of neural network architecture using genetic programming improves detection of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4, 28 (2003)

    Article  Google Scholar 

  16. Moore, J.H., Parker, J.S., Olsen, N.J., Aune, T.S.: Symbolic discriminant analysis of microarray data in autoimmune disease. Genet. Epidemiol. 23, 57–69 (2002)

    Article  Google Scholar 

  17. Moore, J.H., Parker, J.S., Hahn, L.W.: Symbolic Discriminant Analysis for Mining Gene Expression Patterns. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS (LNAI), vol. 2167, pp. 372–381. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  18. Ritchie, M.D., Coffey, C.S., Moore, J.H.: Genetic Programming Neural Networks: A Bioinformatics Tool for Human Genetics. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 438–448. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  20. Moore, J.H.: Cross validation consistency for the assessment of genetic programming results in microarray studies. In: Raidl, G., et al. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 99–106. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  21. Ritchie, M.D., Hahn, L.W., Roodi, N., Bailey, L.R., Dupont, W.D., Parl, F.F., Moore, J.H.: Multifactor dimensionality reduction reveals high-order interactions among estrogen metabolism genes in sporadic breast cancer. Am. J. Hum. Genet. 69, 138–147 (2001)

    Article  Google Scholar 

  22. Koza, J.R.: Genetic Programming: On the programming of computers by means of natural selection. MIT Press, Cambridge (1993)

    Google Scholar 

  23. Koza, J.R.: Genetic Programming II: Automatic discovery of reusable programs. MIT Press, Cambridge (1998)

    Google Scholar 

  24. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Automatic programming and automatic circuit synthesis. MIT Press, Cambridge (1999)

    Google Scholar 

  25. Culverhouse, R., Suarez, B.K., Lin, J., Reich, T.: A Perspective on Epistasis: Limits of Models Displaying No Main Effect. Am. J. Hum. Genet. 70, 461–471 (2002)

    Article  Google Scholar 

  26. Moore, J.H., Hahn, L.W., Ritchie, M.D., Thornton, T.A., White, B.C.: Application of genetic algorithms to the discovery of complex genetic models for simulations studies in human genetics. In: Langdon, W.B., et al. (eds.) Proceedings of the Genetic and Evolutionary Algorithm Conference, pp. 1150–1155. Morgan Kaufman Publishers, San Francisco (2002)

    Google Scholar 

  27. Ott, J.: Neural networks and disease association. Am. J. Med. Genet. 105, 60–61 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bush, W.S., Motsinger, A.A., Dudek, S.M., Ritchie, M.D. (2005). Can Neural Network Constraints in GP Provide Power to Detect Genes Associated with Human Disease?. In: Rothlauf, F., et al. Applications of Evolutionary Computing. EvoWorkshops 2005. Lecture Notes in Computer Science, vol 3449. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32003-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32003-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25396-9

  • Online ISBN: 978-3-540-32003-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics