Skip to main content

A Polynomial-Time Algorithm for the Matching of Crossing Contact-Map Patterns

  • Conference paper
Algorithms in Bioinformatics (WABI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3240))

Included in the following conference series:

Abstract

Contact maps are a model to capture the core information in the structure of biological molecules, e.g., proteins. A contact map consists of an ordered set S of elements (representing a protein’s sequence of amino acids), and a set A of element pairs of S, called arcs (representing amino acids which are closely neighbored in the structure). Given two contact maps (S,A) and (S p ,A p ) with |A|≥ |A p |, the Contact Map Pattern Matching (CMPM) problem asks whether the “pattern” (S p ,A p ) “occurs” in (S,A), i.e., informally stated, whether there is a subset of |A p | arcs in A whose arc structure coincides with A p . CMPM captures the biological question of finding structural motifs in protein structures. In general, CMPM is NP-hard. In this paper, we show that CMPM is solvable in O(|A|6|A p |2) time when the pattern is \(\{<,\between\}\)-structured, i.e., when each two arcs in the pattern are disjoint or crossing. Our algorithm extends to other closely related models. In particular, it answers an open question raised by Vialette that, rephrased in terms of contact maps, asked whether CMPM for \(\{<,\between\}\)-structured patterns is NP-hard or solvable in polynomial time. Our result stands in sharp contrast to the NP-hardness of closely related problems. We provide experimental results which show that contact maps derived from real protein structures can be processed efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two sequences with nested arc annotations. Theoretical Computer Science 312, 337–358 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Berman, H.M., et al.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000), http://www.rcsb.org/pdb/

    Article  Google Scholar 

  3. Blin, G., Fertin, G., Vialette, S.: New results for the 2-interval pattern problem. In: Proc. of the 15th CPM. LNCS, Springer, Heidelberg (2004) (to appear)

    Google Scholar 

  4. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Gramm, J., Guo, J., Niedermeier, R.: Pattern matching for arc-annotated sequences. In: Agrawal, M., Seth, A.K. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 182–193. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: Proc. of the 40th FOCS, pp. 512–521. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  7. Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)

    MATH  Google Scholar 

  8. Jiang, T., Lin, G.-H., Ma, B., Zhang, K.: The Longest Common Subsequence problem for arc-annotated sequences. In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 154–165. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Lancia, G., Carr, R., Walenz, B., Istrail, S.: 1001 optimal PDB structure alignments: Integer Programming methods for finding the maximum contact map overlap. Journal of Computational Biology 11(1), 27–52 (2004)

    Article  Google Scholar 

  10. Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH – A Hierarchic Classification of Protein Domain Structures. Structure 5(8), 1093–1108 (1997), http://www.biochem.ucl.ac.uk/bsm/cath/

    Article  Google Scholar 

  11. Wang, Z., Zhang, K.: RNA secondary structure prediction. In: Jiang, T., et al. (eds.) Current Topics in Computational Molecular Biology, pp. 345–364. MIT Press, Cambridge (2002)

    Google Scholar 

  12. Vialette, S.: On the computational complexity of 2-interval pattern matching problems. Theoretical Computer Science 312(2-3), 223–249 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gramm, J. (2004). A Polynomial-Time Algorithm for the Matching of Crossing Contact-Map Patterns. In: Jonassen, I., Kim, J. (eds) Algorithms in Bioinformatics. WABI 2004. Lecture Notes in Computer Science(), vol 3240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30219-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30219-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23018-2

  • Online ISBN: 978-3-540-30219-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics