Skip to main content

Oil Palm Empty Fruit Bunch Fibres and Biopolymer Composites: Possible Effects of Moisture on the Elasticity, Fracture Properties and Reliability

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Oil palm (Elaeis guineensis) is a widely cultivated tropical tree from which the mesocarp (reddish pulp), a part of the fruit of the tree, is processed to yield edible vegetable oil. However, the process generates a significant amount of oil palm empty fruit bunch (OPEFB), which is regarded as a biowaste. Since the OPEFB contain a lot of fibres, this has led to several studies to investigate its properties for reinforcing engineering materials. Designating OPEFB fibres for fibre reinforced composite applications makes good economic sense because these fibres are renewable, biodegradable and cheaper than man-made fibres. This chapter discusses the mechanics of oil palm fibres based on findings from recent studies carried out by the authors as well as from the literature. The focus is on the effects of moisture on the mechanical properties of the fibres. The findings are applied to establish arguments for designing OPEFB fibre reinforced biopolymer composites such as starch-based composites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdul Khalil HPS, Siti Alwani M, Ridzuan R et al (2008) Chemical composition, morphological characteristics, and cell wall structure of Malaysian oil palm fibers. Polym Plast Technol Eng 47:273–280

    Article  CAS  Google Scholar 

  • Acosta S, Jiménez A, Chiralt A, et al (2013) Mechanical, barrier and microstructural properties of films based on cassava starch gelatin blends: effect of aging and lipid addition. In: Inside Food Symposium. Belgium

    Google Scholar 

  • Andersons J, Sparnins E, Joffe R (2006) Stiffness and strength of flax fiber/polymer matrix composites. Polym Compos 27:221–229

    Article  CAS  Google Scholar 

  • Bakar AA, Hassan A, Yusof AFM (2006) The effect of oil extraction of the oil palm empty fruit bunch on the processability, impact and flexural properties of PVC-U composites. Int J Polym Mater Polym Biomater 55:627–641

    Article  Google Scholar 

  • Bergeret A, Benezet JC (2011) Natural fibre-reinforced biofoams. Int J Polym Sci. doi:10.1155/2011/569871

    Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  Google Scholar 

  • Buana SASM, Pasbaskhsh P, Goh KL et al (2013) Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers Polym 14:623–629

    Article  Google Scholar 

  • Calvert P (1997) The structure of starch. Nature 389:338–339

    Article  CAS  Google Scholar 

  • Cyras VP, Manfredi LB, Ton-That M-T, Vazquez A (2008) Physical and mechanical properties of thermoplastic starch/montmorillonite nanocomposite films. Carbohydr Polym 73:55–63

    Article  CAS  Google Scholar 

  • Dittenber DB, Gangarao HVS (2012) Critical review of recent publications on use of natural composites in infrastructure. Compos Part A Appl Sci Manuf 43:1419–1429

    Article  Google Scholar 

  • Gibson LJ (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 1–18. doi:10.1098/rsif.2012.0341

  • Goh KL, Chen SY, Liao K (2014) A thermomechanical framework for reconciling the effects of ultraviolet radiation exposure time and wavelength on connective tissue elasticity. Biomech Model Mechanobiol. doi:10.1007/s10237-013-0551-7

    Google Scholar 

  • Goh KL, Huq AMA, Aspden RM, Hukins DWL (2008) Nano-fibre critical length depends on shape. Adv Compos Lett 17:131–133

    Google Scholar 

  • Gunawan FE, Homma H, Brodjonegoro SS et al (2009) Mechanical properties of oil palm empty fruit bunch fibre. J Solid Mech Mater Eng 3:943–951

    Article  Google Scholar 

  • Haque A, Mahmood S, Walker L, Jeelani S (1991) Moisture and temperature induced degradation in tensile properties of Kevlar-graphite/epoxy hybrid composites. J Reinf Plast Compos 10:132–145

    Article  CAS  Google Scholar 

  • Hariharan ABA, Abdul Khalil HPS (2005) Lignocellulose-based hybrid bilayer laminate composite: part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin. J Compos Mater 39:663–684

    Article  CAS  Google Scholar 

  • Hassan A, Salema AA, Ani FN, Bakar AA (2010) A review on oil palm empty fruit bunch fiber-reinforced polymer composite materials. Polym Compos 31:2079–2101

    Article  CAS  Google Scholar 

  • Hill CAS, Abdul Khalil HPS (2000) Effect of fiber treatments on mechanical properties of coir or oil palm fiber reinforced polyester composites. J Appl Polym Sci 78:1685–1697

    Google Scholar 

  • Ho M-P, Wang H, Lee J et al (2012) Critical factors on manufacturing processes of natural fibre composites. Compos Part B 43:3549–3562

    Article  CAS  Google Scholar 

  • Hosseinaei O, Wang S, Enayati AA, Rials TG (2012) Effects of hemicellulose extraction on properties of wood flour and wood-plastic composites. Compos Part A Appl Sci Manuf 43:686–694

    Article  CAS  Google Scholar 

  • Ismail H, Rosnah N, Rozman HD (1997) Effects of various bonding systems on mechanical properties of oil palm fibre reinforced rubber composites. Eur Polym J 33:1231–1238

    Article  CAS  Google Scholar 

  • Jawaid M, Khalil HPS (2011) Cellulosic/synthetic fibre reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  • Kalam A, Sahari BB, Khalid YA, Wong SV (2005) Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/epoxy composites. Compos Struct 71:34–44

    Article  Google Scholar 

  • Kalia S, Dufresne A, Cherian BM et al (2011) Cellulose-based bio- and nanocomposites: a Review. Int J Polym Sci. doi:10.1155/2011/837875

    Google Scholar 

  • Kelly A, Macmillan NH (1986) Strong solids, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Khalil HPS, Hanida S, Kang CW, Fuaad NAN (2007) Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. J Reinf Plast Compos 26:203–218

    Article  Google Scholar 

  • Ku H, Wang H, Pattarachaiyakoop N, Trada M (2011) A review on the tensile properties of natural fiber reinforced polymer composites. Compos Part B 42:856–873

    Article  Google Scholar 

  • Liang J-Z (2012) Predictions of Young’s modulus of short inorganic fiber reinforced polymer composites. Compos Part B Eng 43:1763–1766

    Article  CAS  Google Scholar 

  • Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Expr Polym Lett 3:366–375

    Google Scholar 

  • Mahjoub R, Yatim JBM, Sam ARM (2013) A review of structural performance of oil palm empty fruit bunch fiber in polymer composites. Adv Mater Sci Eng. doi:10.1155/2013/415359

    Google Scholar 

  • Majdzadeh-ardakani K, Navarchian AH, Sadeghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554

    Article  CAS  Google Scholar 

  • Mishra SP, Manent AS, Chabot B, Daneault C (2012) Production of nanocellulose from native cellulose—various options utilizing ultrasound. BioResources 7:422–435

    CAS  Google Scholar 

  • Monteiro SN, Terrones LAH, Almeida JRMD (2008) Mechanical performance of coir fiber/polyester composites. Polym Test 27:591–595

    Article  CAS  Google Scholar 

  • Moser B, Weber L, Rossoll A, Mortensen A (2003) The influence of non-linear elasticity on the determination of Weibull parameters using the fibre bundle tensile test. Compos Part A Appl Sci Manuf 34:907–912

    Article  Google Scholar 

  • Ng XW, Hukins DWL, Goh KL (2010) Influence of fibre taper on the work of fibre pull-out in short fibre composite fracture. J Mater Sci 45:1086–1090

    Article  CAS  Google Scholar 

  • Raju G, Ratnam CT, Ibrahim NA et al (2008) Enhancement of PVC/ENR blend properties by poly(methyl acrylate) grafted oil palm empty fruit bunch fiber. J Appl Polym Sci 110:368–375

    Article  CAS  Google Scholar 

  • Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: vakka, date and bamboo. Compos Struct 77:288–295

    Article  Google Scholar 

  • Selzer R, Friedrich K (1995) Influence of water up-take on interlaminar fracture properties of carbon fibre-reinforced polymer composites. J Mater Sci 30:334–338

    Article  CAS  Google Scholar 

  • Shalwan A, Yousif BF (2013) In state of art: mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater Des 48:14–24

    Article  CAS  Google Scholar 

  • Sreekala MS, George J, Kumaran MG, Thomas S (2001) Water-sorption kinetics in oil palm fibers. J Polym Sci 39:1215–1223

    Article  CAS  Google Scholar 

  • Sreekala MS, Kumaran MG, Thomas S (1997) Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. J Appl Polym Sci 66:821–835

    Article  CAS  Google Scholar 

  • Sreekala MS, Thomas S (2003) Effect of fibre surface modification on water-sorption characteristics of oil palm fibres. Compos Sci Technol 63:861–869

    Article  CAS  Google Scholar 

  • Tan L, Yu Y, Li X et al (2013) Pretreatment of empty fruit bunch from oil palm for fuel ethanol production and proposed biorefinery process. Bioresour Technol 135:275–282

    Article  CAS  Google Scholar 

  • Torres FG, Troncoso OP, Torres C et al (2011) Biodegradability and mechanical properties of starch films from Andean crops. Int J Biol Macromol 48:603–606

    Article  CAS  Google Scholar 

  • Tucker CL, Liang E (1999) Stiffness predictions for unidirectional short-fiber composites: review and evaluation. Compos Sci Technol 59:655–671

    Article  Google Scholar 

  • Udoetok IA (2012) Characterization of ash made from oil palm empty fruit bunches (oefb). Int J Environ Sci 3:518–524

    CAS  Google Scholar 

  • Venkateshwaran N, Elayaperumal A, Sathiya GK (2012) Prediction of tensile properties of hybrid-natural fiber composites. Compos Part B 43:793–796

    Article  CAS  Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. ASME J Appl Mech 293–297

    Google Scholar 

  • Wirjosentono B, Guritno P, Ismail H (2004) Oil palm empty fruit bunch filled polypropylene composites. Int J Polym Mater Polym Biomater 53:295–306

    Article  CAS  Google Scholar 

  • Yousif BF, El-Tayeb NSM (2008) High-stress three-body abrasive wear of treated and untreated oil palm fibre-reinforced polyester composites. Proc Inst Mech Eng Part J-J Eng Tribol 222:637–646

    Article  CAS  Google Scholar 

  • Zdunek A, Kozioł A, Pieczywek PM, Cybulska J (2014) Evaluation of the nanostructure of pectin, hemicellulose and cellulose in the cell walls of pears of different texture and firmness. Food Bioprocess Technol 7:3525–3535

    Article  CAS  Google Scholar 

  • Zhu J, Zhu H, Njuguna J, Abhyankar H (2013) Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials (Basel) 6:5171–5198

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thanked Mr. Tan Teck Siong, from JEOL Asia Pte Ltd, for helping us with the acquisition of the scanning electron images of OPEFB fibres.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheng Lim Goh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Tan, Z.E., Liew, C.K., Yee, F.C., Talamona, D., Goh, K.L. (2017). Oil Palm Empty Fruit Bunch Fibres and Biopolymer Composites: Possible Effects of Moisture on the Elasticity, Fracture Properties and Reliability. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics