Skip to main content

Theoretical Framework

  • Chapter
  • First Online:
  • 965 Accesses

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 268))

Abstract

Jet physics, in particular at a hadron collider such as the LHC, cannot be understood without being thoroughly familiar with the theory of the strong interaction: quantum chromodynamics or short QCD. The material presented in this chapter is intended to provide the required proficiency to comprehend experimental and phenomenological publications on the subject of jet physics, some of which will be discussed in detail in the later chapters of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The use of the unit “barn” goes back to December 1942, when it was introduced during wartime by M.G. Holloway and C.P. Baker. Because of its connection to nuclear physics this information was classified until 1948 [1].

  2. 2.

    Supposing there ought to be four constituents in analogy to the four leptons, e, \(\mu \), \(\nu _e\), and \(\nu _\mu \), known in 1963, Zweig dubbed them aces, but the name did not stick.

  3. 3.

    The name “gluon” initially was introduced by Gell-Mann in a slightly different context without reference to colour [23].

  4. 4.

    References in this book have been managed with the help of JabRef [29].

  5. 5.

    PDG: http://pdg.web.cern.ch/pdg.

    Further useful resources for data, programmes, etc. are:

    HepData: http://durpdg.dur.ac.uk/HepData,

    HepForge: http://www.hepforge.org/.

  6. 6.

    A Hermitian matrix \(\mathbf {A}\) is equal to its complex conjugate transpose, i.e. \(\mathbf {A} =\mathbf {A} ^{*T}=\mathbf {A} ^\dag \).

  7. 7.

    Feynman diagrams in this book have been drawn with the help of JaxoDraw [52].

  8. 8.

    Recall that \(\hbar c = 1\) in natural units roughly corresponds to 200 MeV/fm.

  9. 9.

    The subscript “+” indicates the use of the plus prescription defined via the distribution \(\int _0^1 \frac{f(x)}{(1-x)}_+\mathrm {d}x = \int _0^1 \frac{(f(x)-f(1))}{(1-x)}\mathrm {d}x\) for any sufficiently smooth function f.

  10. 10.

    This should not be confused with the luminosity, which is a characteristic of a collider.

  11. 11.

    Of course, azimuthal angular separations are delimited to the interval \((-\pi ,+\pi ]\).

  12. 12.

    \(m_\mathrm {charm}^{\overline{\text {MS}}}=1.275\,\mathrm{GeV} \), \(m_\mathrm {bottom}^{\overline{\text {MS}}}=4.18\,\mathrm{GeV} \) [28].

  13. 13.

    HERAFitter recently was renamed to xFitter.

References

  1. M.G. Holloway, C.P. Baker, Note on the origin of the term “barn”, Technical report, LAMS-523, Los Alamos National Laboratory, 1947. Report submitted: 13 September 1944. Report issued: 5 March 1947

    Google Scholar 

  2. D. Haitz, Precision Measurements of Proton Structure and Jet Energy Scale with the CMS Detector at the LHC. PhD thesis, KIT (Karlsruher Institut für Technologie), Jun, 2016

    Google Scholar 

  3. J. Chadwick, Possible existence of a neutron. Nature 129, 312 (1932). doi:10.1038/129312a0

    Article  ADS  Google Scholar 

  4. P.A.M. Dirac, The quantum theory of the electron. Proc. Roy. Soc. Lond. A 117, 610 (1928). doi:10.1098/rspa.1928.0023

    Article  ADS  MATH  Google Scholar 

  5. C.D. Anderson, The positive electron. Phys. Rev. 43, 491 (1933). doi:10.1103/PhysRev.43.491

    Article  ADS  Google Scholar 

  6. S.H. Neddermeyer, C.D. Anderson, Note on the nature of cosmic ray particles. Phys. Rev. 51, 884 (1937). doi:10.1103/PhysRev.51.884

    Article  ADS  Google Scholar 

  7. H. Yukawa, On the interaction of elementary particles I. Proc. Phys. Math. Soc. Jap. 17, 48 (1935). doi:10.1143/PTPS.1.1

    MATH  Google Scholar 

  8. C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Observations on the tracks of slow mesons in photographic emulsions. 1. Nature 160, 453 (1947). doi:10.1038/160453a0

    Article  ADS  Google Scholar 

  9. C.M.G. Lattes, G.P.S. Occhialini, C.F. Powell, Observations on the tracks of slow mesons in photographic emulsions. 2. Nature 160, 486 (1947). doi:10.1038/160486a0

    Article  ADS  Google Scholar 

  10. R. Cahn, G. Goldhaber, The Experimental Foundations of Particle Physics, 2nd edn. (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  11. V.E. Barnes et al., Observation of a hyperon with strangeness -3. Phys. Rev. Lett. 12, 204 (1964). doi:10.1103/PhysRevLett.12.204

    Article  ADS  Google Scholar 

  12. M. Gell-Mann, A schematic model of baryons and mesons. Phys. Lett. 8, 214 (1964). doi:10.1016/S0031-9163(64)92001-3

    Article  ADS  MathSciNet  Google Scholar 

  13. G. Zweig, An SU \(_3\) model for strong interaction symmetry and its breaking; Version 1. Technical report, CERN-TH-401, CERN, Geneva, 1964

    Google Scholar 

  14. G. Zweig, An SU \(_3\) model for strong interaction symmetry and its breaking; Version 2. Technical report, CERN-TH-412, CERN, Geneva, 1964

    Google Scholar 

  15. M. Gell-Mann, Quarks, color, and QCD, in Proceedings, Workshop on QCD—20 Years Later, vol. C920609, p. 3. Aachen, Germany, 9–13 June 1992

    Google Scholar 

  16. Creative Commons License. CC-BY-SA-3.0, http://creativecommons.org/licenses/by-sa/3.0/

  17. E.D. Bloom et al., High-energy inelastic \(ep\) scattering at 6-degrees and 10-degrees. Phys. Rev. Lett. 23, 930 (1969). doi:10.1103/PhysRevLett.23.930

    Article  ADS  Google Scholar 

  18. M. Breidenbach et al., Observed behavior of highly inelastic electron-proton scattering. Phys. Rev. Lett. 23, 935 (1969). doi:10.1103/PhysRevLett.23.935

    Article  ADS  Google Scholar 

  19. J.D. Bjorken, Asymptotic sum rules at infinite momentum. Phys. Rev. 179, 1547 (1969). doi:10.1103/PhysRev.179.1547

    Article  ADS  Google Scholar 

  20. G. ’t Hooft, M.J.G. Veltman, Regularization and renormalization of gauge fields. Nucl. Phys. B 44 (1972) 189. doi:10.1016/0550-3213(72)90279-9

  21. H. Fritzsch, M. Gell-Mann, Current algebra: quarks and what else?, in Proceedings, 16th International Conference on High-Energy Physics (ICHEP), vol. C720906V2, p. 135. Batavia, IL, USA, 6–13 Sept 1972, arXiv:hep-ph/0208010

  22. O.W. Greenberg, Spin and unitary spin independence in a paraquark model of baryons and mesons. Phys. Rev. Lett. 13, 598 (1964). doi:10.1103/PhysRevLett.13.598

    Article  ADS  Google Scholar 

  23. M. Gell-Mann, Symmetries of baryons and mesons. Phys. Rev. 125, 1067 (1962). doi:10.1103/PhysRev.125.1067

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30, 1343 (1973). doi:10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  25. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 1. Phys. Rev. D 8, 3633 (1973). doi:10.1103/PhysRevD.8.3633

    Article  ADS  Google Scholar 

  26. D.J. Gross, F. Wilczek, Asymptotically free gauge theories. 2. Phys. Rev. D 9, 980 (1974). doi:10.1103/PhysRevD.9.980

    Article  ADS  Google Scholar 

  27. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346 (1973). doi:10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  28. K.A. Olive and others (Particle Data Group), Review of particle physics. Chin. Phys. C 38 (2014) 090001. doi:10.1088/1674-1137/38/9/090001

  29. JabRef Development Team, JabRef (2003), http://www.jabref.org/. Accessed 24 May 2016

  30. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Frontiers in Physics) (Westview Press, Boulder, CO, 1995)

    Google Scholar 

  31. I.J. Aitchison, A.J. Hey, Gauge Theories in Particle Physics: A Practical Introduction, Fourth Edition - 2 Volume set. 4th edn. 12 (CRC Press, 2012)

    Google Scholar 

  32. G.F. Sterman, An Introduction to Quantum Field Theory (Cambridge University Press, 1993)

    Google Scholar 

  33. C. Itzykson, J.-B. Zuber, Quantum Field Theory (Dover Publications, 2006)

    Google Scholar 

  34. J.D. Bjorken, S.D. Drell, Relativistic Quantum Fields, 1st edn. (Mcgraw-Hill College, 1965)

    Google Scholar 

  35. G. Dissertori, I.G. Knowles, M. Schmelling, Quantum Chromodynamics: High Energy Experiments and Theory, 2nd edn. (Oxford University Press, 2009)

    Google Scholar 

  36. F.J. Ynduráin, The Theory of Quark and Gluon Interactions, 4th edn. Texts and monographs in physics (Springer, Berlin, 2006)

    Google Scholar 

  37. R.K. Ellis, W.J. Stirling, B.R. Webber, QCD and Collider Physics (Nuclear Physics and Cosmology) (Cambridge University Press, Cambridge, Cambridge Monographs on Particle Physics, 1996)

    Book  Google Scholar 

  38. Y.L. Dokshitzer, V.A. Khoze, A.H. Mueller, S.I. Troian, Basics of Perturbative QCD. Editions Frontieres, Dec 1991

    Google Scholar 

  39. T. Muta, Foundations of Quantum Chromodynamics: An Introduction to Perturbative Methods in Gauge Theories (World Scientific, 1987)

    Google Scholar 

  40. CTEQ Collaboration, Handbook of perturbative QCD. Rev. Mod. Phys. 67, 157 (1995). doi:10.1103/RevModPhys.67.157

  41. D.W. Duke, R.G. Roberts, Determinations of the QCD strong coupling \(\alpha _s\) and the scale \(\varLambda _{\rm{QCD}}\). Phys. Rept. 120, 275 (1985). doi:10.1016/0370-1573(85)90112-7

    Article  ADS  Google Scholar 

  42. G. Altarelli, Partons in quantum chromodynamics. Phys. Rept. 81, 1 (1982). doi:10.1016/0370-1573(82)90127-2

  43. A.H. Mueller, Perturbative QCD at high-energies. Phys. Rept. 73, 237 (1981). doi:10.1016/0370-1573(81)90030-2

  44. R.P. Feynman, Photon-Hadron Interactions (Westview Press, 1998)

    Google Scholar 

  45. J. Collins, Foundations of Perturbative QCD, Nuclear Physics and Cosmology (Cambridge University Press, Cambridge, Cambridge Monographs on Particle Physics, 2011)

    Book  Google Scholar 

  46. S. Moch, Hard QCD at hadron colliders. J. Phys. G 35, 073001 (2008). doi:10.1088/0954-3899/35/7/073001. arXiv:0803.0457

    Article  ADS  Google Scholar 

  47. J.M. Campbell, J.W. Huston, W.J. Stirling, Hard interactions of quarks and gluons: a primer for LHC physics. Rept. Prog. Phys. 70, 89 (2007). doi:10.1088/0034-4885/70/1/R02. arXiv:hep-ph/0611148

    Article  ADS  Google Scholar 

  48. R. Alemany-Fernandez et al., The Large Hadron Collider: Harvest of Run 1, 1st edn. (Springer, Berlin, Germany, 2015)

    Google Scholar 

  49. R.M. Barnett et al., Physics at the Terascale, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2011)

    Google Scholar 

  50. H. Fritzsch, M. Gell-Mann (eds.), 50 Years of Quarks (World Scientific Publishing Co. Pte. Ltd., 2015)

    Google Scholar 

  51. P.M. Zerwas, H.A. Kastrup (eds.), QCD: 20 Years Later: Aachen, June 9–13, 1992) (World Scientific Publishing Co. Pte. Ltd., 1993)

    Google Scholar 

  52. D. Binosi, L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams. Comput. Phys. Commun. 161, 76 (2004). doi:10.1016/j.cpc.2004.05.001. arXiv:hep-ph/0309015

    Article  ADS  Google Scholar 

  53. L.D. Faddeev, V.N. Popov, Feynman diagrams for the yang-mills field. Phys. Lett. B 25, 29 (1967). doi:10.1016/0370-2693(67)90067-6

    Article  ADS  Google Scholar 

  54. R.D. Peccei, H.R. Quinn, CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440 (1977). doi:10.1103/PhysRevLett.38.1440

    Article  ADS  Google Scholar 

  55. R.D. Peccei, H.R. Quinn, Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D 16, 1791 (1977). doi:10.1103/PhysRevD.16.1791

    Article  ADS  Google Scholar 

  56. G. ’t Hooft, The Glorious days of physics: renormalization of gauge theories, arXiv:hep-th/9812203

  57. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop \(\beta \)-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). doi:10.1016/S0370-2693(97)00370-5. arXiv:hep-ph/9701390

    Article  ADS  Google Scholar 

  58. G. ’t Hooft, Dimensional regularization and the renormalization group. Nucl. Phys. B 61 (1973) 455. doi:10.1016/0550-3213(73)90376-3

  59. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998 (1978). doi:10.1103/PhysRevD.18.3998

    Article  ADS  Google Scholar 

  60. J. Beringer and others (Particle Data Group), Review of particle physics. Phys. Rev. D 86 (2012) 010001. doi:10.1103/PhysRevD.86.010001

  61. S. Durr et al., Ab-Initio Determination of Light Hadron Masses. Science 322, 1224 (2008). doi:10.1126/science.1163233. arXiv:0906.3599

    Article  ADS  Google Scholar 

  62. J.C. Collins, D.E. Soper, G. Sterman, Factorization of Hard Processes in QCD, volume 5 of Advanced Series on Directions in High Energy Physics, Ch. 1, p. 1, (World Scientific Pub Co Inc, 1988), arXiv:hep-ph/0409313. doi:10.1142/9789814503266_0001

  63. J.R. Andersen et al., Les Houches 2013: Physics at TeV Colliders: Standard Model Working Group Report, arXiv:1405.1067

  64. S. Dittmaier, A. Huss, C. Speckner, Weak radiative corrections to dijet production at hadron colliders. JHEP 11, 095 (2012). doi:10.1007/JHEP11(2012)095. arXiv:1210.0438

    Article  ADS  Google Scholar 

  65. V.N. Gribov, L.N. Lipatov, Deep inelastic ep scattering in perturbation theory. Sov. J. Nucl. Phys. 15, 438 (1972)

    Google Scholar 

  66. L.N. Lipatov, The parton model and perturbation theory. Sov. J. Nucl. Phys. 20 (1975) 94. [Yad. Fiz.20,181(1974)]

    Google Scholar 

  67. G. Altarelli, G. Parisi, Asymptotic Freedom in Parton Language. Nucl. Phys. B 126, 298 (1977). doi:10.1016/0550-3213(77)90384-4

    Article  ADS  Google Scholar 

  68. Y.L. Dokshitzer, Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics. Sov. Phys. JETP 46, 641 (1977)

    ADS  Google Scholar 

  69. S. Moch, J.A.M. Vermaseren, A. Vogt, The three loop splitting functions in QCD: the nonsinglet case. Nucl. Phys. B 688, 101 (2004). doi:10.1016/j.nuclphysb.2004.03.030. arXiv:hep-ph/0403192

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. A. Vogt, S. Moch, J.A.M. Vermaseren, The three-loop splitting functions in QCD: the singlet case. Nucl. Phys. B 691, 129 (2004). doi:10.1016/j.nuclphysb.2004.04.024. arXiv:hep-ph/0404111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The pomeranchuk singularity in nonabelian gauge theories. Sov. Phys. JETP 45 (1977) 199. [Zh. Eksp. Teor. Fiz.72,377(1977)]

    Google Scholar 

  72. I.I. Balitsky, L.N. Lipatov, The pomeranchuk singularity in quantum chromodynamics. Sov. J. Nucl. Phys. 28 (1978) 822. [Yad. Fiz.28,1597(1978)]

    Google Scholar 

  73. W.J. Stirling, Parton luminosity and cross section plots. Private communication, 2016. http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

  74. C. Buttar et al., The QCD, EW, and Higgs Working Group: Summary Report, in Proceedings, 4th Les Houches Workshop 2005 on Physics at TeV colliders (Les Houches 2005). Les Houches, France, 2-20 May 2005. arXiv:hep-ph/0604120

  75. S.D. Drell, T.-M. Yan, Partons and their applications at high-energies. Annals Phys. 66, 578 (1971). doi:10.1016/0003-4916(71)90071-6

    Article  ADS  Google Scholar 

  76. S.M. Berman, J.D. Bjorken, J.B. Kogut, Inclusive processes at high transverse momentum. Phys. Rev. D 4, 3388 (1971). doi:10.1103/PhysRevD.4.3388

    Article  ADS  Google Scholar 

  77. F. Halzen, D.M. Scott, energy flow: testing QCD without structure functions, in Proceedings, 11th International Symposium on Multiparticle Dynamics (ISMD), p. 0593. Bruges, Belgium, 22-27 June 1980

    Google Scholar 

  78. S.D. Drell, D.J. Levy, T.-M. Yan, A theory of deep-inelastic lepton-nucleon scattering and lepton-pair annihilation processes. I. Phys. Rev. 187, 2159 (1969). doi:10.1103/PhysRev.187.2159

    Article  ADS  Google Scholar 

  79. S.D. Drell, D.J. Levy, T.-M. Yan, A theory of deep-inelastic lepton-nucleon scattering and lepton-pair annihilation processes. III. deep-inelastic electron-positron annihilation. Phys. Rev. D 1, 1617 (1970). doi:10.1103/PhysRevD.1.1617

    Article  ADS  Google Scholar 

  80. N. Cabibbo, G. Parisi, M. Testa, Hadron production in \(e^+e^-\) collisions. Lett. Nuovo Cim. 4S1 (1970) 35. doi:10.1007/BF02755392. [Lett. Nuovo Cim.4,35(1970)]

  81. J.D. Bjorken, S.J. Brodsky, Statistical model for electron-positron annihilation Into hadrons. Phys. Rev. D 1, 1416 (1970). doi:10.1103/PhysRevD.1.1416

    Article  ADS  Google Scholar 

  82. R.P. Feynman, R.D. Field, G.C. Fox, Quantum-chromodynamic approach for the large-transverse- momentum production of particles and jets. Phys. Rev. D 18, 3320 (1978). doi:10.1103/PhysRevD.18.3320

    Article  ADS  Google Scholar 

  83. A.V. Belitsky, G.P. Korchemsky, G.F. Sterman, Energy flow in QCD and event shape functions. Phys. Lett. B 515, 297 (2001). doi:10.1016/S0370-2693(01)00899-1. arXiv:hep-ph/0106308

    Article  ADS  Google Scholar 

  84. A. Ali, G. Kramer, Jets and QCD: a historical review of the discovery of the quark and gluon jets and its impact on QCD. Eur. Phys. J. H 36, 245 (2011). doi:10.1140/epjh/e2011-10047-1. arXiv:1012.2288

    Article  Google Scholar 

  85. P. Söding, On the discovery of the gluon. Eur. Phys. J. H 35, 3 (2010). doi:10.1140/epjh/e2010-00002-5

    Article  ADS  Google Scholar 

  86. B.R. Stella, H.-J. Meyer, Y(9.46 GeV) and the gluon discovery (a critical recollection of PLUTO results). Eur. Phys. J. H 36, 203 (2011). doi:10.1140/epjh/e2011-10029-3. arXiv:1008.1869

    Article  Google Scholar 

  87. ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716 (2012) 1. doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214

  88. CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30 (2012). doi:10.1016/j.physletb.2012.08.021. arXiv:1207.7235

  89. CDF Collaboration, Observation of top quark production in \(\bar{p}p\) collisions. Phys. Rev. Lett. 74, 2626 (1995). doi:10.1103/PhysRevLett.74.2626. arXiv:hep-ex/9503002

  90. D0 Collaboration, Observation of the top quark. Phys. Rev. Lett. 74, 2632 (1995). doi:10.1103/PhysRevLett.74.2632. arXiv:hep-ex/9503003

  91. H.U. Bengtsson, The Lund Monte Carlo for high \(p_T\) physics. Comput. Phys. Commun. 31, 323 (1984). doi:10.1016/0010-4655(84)90018-3

    Article  ADS  Google Scholar 

  92. T. Sjöstrand, The Lund Monte Carlo for jet fragmentation. Comput. Phys. Commun. 27, 243 (1982). doi:10.1016/0010-4655(82)90175-8

  93. T. Sjöstrand, High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4. Comput. Phys. Commun. 82, 74 (1994). doi:10.1016/0010-4655(94)90132-5

    Article  ADS  Google Scholar 

  94. T. Sjöstrand, S. Mrenna, P.Z. Skands, PYTHIA 6.4 Physics and Manual. JHEP 05 (2006) 026. doi:10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175

  95. G. Marchesini, B.R. Webber, Monte carlo simulation of general hard processes with coherent QCD radiation. Nucl. Phys. B 310, 461 (1988). doi:10.1016/0550-3213(88)90089-2

    Article  ADS  Google Scholar 

  96. G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 - April 1991. Comput. Phys. Commun. 67, 465 (1992). doi:10.1016/0010-4655(92)90055-4

    Article  ADS  MATH  Google Scholar 

  97. G. Corcella et al., HERWIG 6: an Event generator for hadron emission reactions with interfering gluons (including supersymmetric processes). JHEP 01, 010 (2001). doi:10.1088/1126-6708/2001/01/010. arXiv:hep-ph/0011363

    Article  ADS  Google Scholar 

  98. G. Corcella et al., HERWIG 6.5 release note, arXiv:hep-ph/0210213

  99. T. Sjöstrand, S. Mrenna, P.Z. Skands, A. Brief, Introduction to PYTHIA 8.1. Comput. Phys. Commun. 178, 852 (2008). doi:10.1016/j.cpc.2008.01.036. arXiv:0710.3820

    Article  ADS  MATH  Google Scholar 

  100. T. Sjöstrand et al., An Introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159 (2015). doi:10.1016/j.cpc.2015.01.024. arXiv:1410.3012

    Article  ADS  MATH  Google Scholar 

  101. M. Bähr et al., Herwig++ physics and manual. Eur. Phys. J. C 58, 639 (2008). doi:10.1140/epjc/s10052-008-0798-9. arXiv:0803.0883

    Article  ADS  Google Scholar 

  102. J. Bellm et al., Herwig 7.0 / Herwig++ 3.0 Release Note, arXiv:1512.01178

  103. T. Gleisberg et al., Event generation with SHERPA 1.1. JHEP 02 (2009) 007. doi:10.1088/1126-6708/2009/02/007, arXiv:0811.4622

  104. A. Buckley et al., General-purpose event generators for LHC physics. Phys. Rept. 504, 145 (2011). doi:10.1016/j.physrep.2011.03.005. arXiv:1101.2599

    Article  ADS  Google Scholar 

  105. S. Gieseke, Z. Nagy, Monte Carlo Generators and Fixed-order Calculations: Predicting the (Un)Expected, 1st edn. Ch. 5, p. 97. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, April, 2011. doi:10.1002/9783527634965.ch5

  106. S. Gieseke, Simulation of jets at colliders. Prog. Part. Nucl. Phys. 72, 155 (2013). doi:10.1016/j.ppnp.2013.04.001

    Article  ADS  Google Scholar 

  107. S. Höche, Introduction to parton-shower event generators, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders (TASI 2014). Boulder, CO, USA, 2–27 June 2014. arXiv:1411.4085

  108. M.A. Dobbs et al., Les Houches guidebook to Monte Carlo generators for hadron collider physics, in Proceedings, 3rd Les Houches Workshop 2003 on Physics at TeV colliders (Les Houches 2003), p. 411. Les Houches, France, May 26–June 2, 2003. arXiv:hep-ph/0403045

  109. I.G. Knowles, A linear algorithm for calculating spin correlations in hadronic collisions. Comput. Phys. Commun. 58, 271 (1990). doi:10.1016/0010-4655(90)90063-7

    Article  ADS  Google Scholar 

  110. I.G. Knowles, Spin correlations in parton–parton scattering. Nucl. Phys. B 310, 571 (1988). doi:10.1016/0550-3213(88)90092-2

    Article  ADS  Google Scholar 

  111. M. Bengtsson, T. Sjöstrand, A comparative study of coherent and noncoherent parton shower evolution. Nucl. Phys. B 289, 810 (1987). doi:10.1016/0550-3213(87)90407-X

    Article  ADS  Google Scholar 

  112. M. Bengtsson, T. Sjöstrand, Coherent parton showers versus matrix elements: implications of PETRA - PEP Data. Phys. Lett. B 185, 435 (1987). doi:10.1016/0370-2693(87)91031-8

    Article  ADS  Google Scholar 

  113. T. Sjöstrand, P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions. Eur. Phys. J. C 39, 129 (2005). doi:10.1140/epjc/s2004-02084-y. arXiv:hep-ph/0408302

    Article  ADS  Google Scholar 

  114. S. Gieseke, P. Stephens, B. Webber, New formalism for QCD parton showers. JHEP 12, 045 (2003). doi:10.1088/1126-6708/2003/12/045. arXiv:hep-ph/0310083

    Article  ADS  Google Scholar 

  115. J.-C. Winter, F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines. JHEP 07, 040 (2008). doi:10.1088/1126-6708/2008/07/040. arXiv:0712.3913

    Article  ADS  Google Scholar 

  116. S. Schumann, F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation. JHEP 03, 038 (2008). doi:10.1088/1126-6708/2008/03/038. arXiv:0709.1027

    Article  ADS  Google Scholar 

  117. G. Gustafson, U. Pettersson, Dipole formulation of QCD cascades. Nucl. Phys. B 306, 746 (1988). doi:10.1016/0550-3213(88)90441-5

    Article  ADS  Google Scholar 

  118. B. Andersson, G. Gustafson, G. Ingelman, T. Sjöstrand, Parton fragmentation and string dynamics. Phys. Rept. 97, 31 (1983). doi:10.1016/0370-1573(83)90080-7

    Article  ADS  Google Scholar 

  119. B. Andersson, G. Gustafson, B. Söderberg, A general model for jet fragmentation. Z. Phys. C 20, 317 (1983). doi:10.1007/BF01407824

    Article  ADS  Google Scholar 

  120. T. Sjöstrand, The merging of jets. Phys. Lett. B 142, 420 (1984). doi:10.1016/0370-2693(84)91354-6

    Article  ADS  Google Scholar 

  121. B.R. Webber, A QCD Model for jet fragmentation including soft gluon interference. Nucl. Phys. B 238, 492 (1984). doi:10.1016/0550-3213(84)90333-X

    Article  ADS  Google Scholar 

  122. J.-C. Winter, F. Krauss, G. Soff, A modified cluster hadronization model. Eur. Phys. J. C 36, 381 (2004). doi:10.1140/epjc/s2004-01960-8. arXiv:hep-ph/0311085

    Article  ADS  Google Scholar 

  123. CDF Collaboration, Charged jet evolution and the underlying event in \(p\bar{p}\) collisions at 1.8 TeV. Phys. Rev. D 65, 092002 (2002). doi:10.1103/PhysRevD.65.092002

  124. CDF Collaboration, The underlying event in hard interactions at the Tevatron \(\bar{p}p\) collider. Phys. Rev. D 70, 072002 (2004). doi:10.1103/PhysRevD.70.072002. arXiv:hep-ex/0404004

  125. CDF Collaboration, Studying the Underlying Event in Drell-Yan and High Transverse Momentum Jet Production at the Tevatron. Phys. Rev. D 82, 034001 (2010). doi:10.1103/PhysRevD.82.034001. arXiv:1003.3146

  126. CDF Collaboration, Study of the energy dependence of the underlying event in proton-antiproton collisions. Phys. Rev. D 92, 092009 (2015). doi:10.1103/PhysRevD.92.092009. arXiv:1508.05340

  127. ATLAS Collaboration, Measurement of underlying event characteristics using charged particles in \(pp\) collisions at \(\sqrt{s} = 900\,\) GeV and 7 TeV with the ATLAS detector. Phys. Rev. D 83 (2011) 112001. doi:10.1103/PhysRevD.83.112001, arXiv:1012.0791

  128. ATLAS Collaboration, Measurements of underlying-event properties using neutral and charged particles in \(pp\) collisions at 900 GeV and 7 TeV with the ATLAS detector at the LHC. Eur. Phys. J. C 71 (2011) 1636. doi:10.1140/epjc/s10052-011-1636-z, arXiv:1103.1816

  129. ATLAS Collaboration, Measurement of the underlying event in jet events from 7 TeV proton-proton collisions with the ATLAS detector. Eur. Phys. J. C 74 (2014) 2965. doi:10.1140/epjc/s10052-014-2965-5, arXiv:1406.0392

  130. ATLAS Collaboration, Measurement of distributions sensitive to the underlying event in inclusive Z-boson production in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C 74 (2014) 319. doi:10.1140/epjc/s10052-014-3195-6, arXiv:1409.3433

  131. CMS Collaboration, First measurement of the underlying event activity at the LHC with \(\sqrt{s} = 0.9\) TeV. Eur. Phys. J. C 70, 555 (2010). doi:10.1140/epjc/s10052-010-1453-9. arXiv:1006.2083

  132. CMS Collaboration, Measurement of the underlying event activity at the LHC with \(\sqrt{s}= 7\) TeV and comparison with \(\sqrt{s} = 0.9\) TeV. JHEP 09 (2011) 109. doi:10.1007/JHEP09(2011)109, arXiv:1107.0330

  133. CMS Collaboration, Measurement of the underlying event in the Drell-Yan process in proton-proton collisions at \(\sqrt{s}=7\) TeV. Eur. Phys. J. C 72, 2080 (2012). doi:10.1140/epjc/s10052-012-2080-4. arXiv:1204.1411

  134. CMS Collaboration, Study of the underlying event at forward rapidity in pp collisions at \(\sqrt{s} =\) 0.9, 2.76, and 7 TeV. JHEP 04 (2013) 072. doi:10.1007/JHEP04(2013)072, arXiv:1302.2394

  135. CMS Collaboration, Measurement of the underlying event activity using charged-particle jets in proton-proton collisions at \(\sqrt{s} = 2.76\,\)TeV. JHEP 09 (2015) 137. doi:10.1007/JHEP09(2015)137, arXiv:1507.07229

  136. ALICE Collaboration, Underlying Event measurements in \(pp\) collisions at \(\sqrt{s}=0.9\) and 7 TeV with the ALICE experiment at the LHC. JHEP 07 (2012) 116. doi:10.1007/JHEP07(2012)116, arXiv:1112.2082

  137. D. Piparo, Statistical Combination of Higgs Decay Channels and Determination of the Jet-Energy Scale of the CMS Experiment at the LHC. PhD thesis, KIT (Karlsruher Institut für Technologie), Nov 2010

    Google Scholar 

  138. T. Sjöstrand, M. van Zijl, A multiple interaction model for the event structure in hadron collisions. Phys. Rev. D 36, 2019 (1987). doi:10.1103/PhysRevD.36.2019

    Article  ADS  Google Scholar 

  139. T. Sjöstrand, P.Z. Skands, Multiple interactions and the structure of beam remnants. JHEP 03, 053 (2004). doi:10.1088/1126-6708/2004/03/053. arXiv:hep-ph/0402078

    Article  ADS  Google Scholar 

  140. M. Bähr, S. Gieseke, M.H. Seymour, Simulation of multiple partonic interactions in Herwig++. JHEP 07, 076 (2008). doi:10.1088/1126-6708/2008/07/076. arXiv:0803.3633

    Article  Google Scholar 

  141. A. Buckley et al., Rivet user manual. Comput. Phys. Commun. 184, 2803 (2013). doi:10.1016/j.cpc.2013.05.021. arXiv:1003.0694

    Article  ADS  Google Scholar 

  142. A. Buckley et al., Systematic event generator tuning for the LHC. Eur. Phys. J. C 65, 331 (2010). doi:10.1140/epjc/s10052-009-1196-7. arXiv:0907.2973

    Article  ADS  Google Scholar 

  143. H. Abramowicz et al., Summary of the Workshop on Multi-Parton Interactions (MPI@LHC 2012), arXiv:1306.5413

  144. S. Plätzer, M. Diehl (eds.), in Proceedings of the 3rd International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 2011), Hamburg, Germany, 21–25 Nov, DESY. DESY, Hamburg, Germany, (2011). doi:10.3204/DESY-PROC-2012-03

  145. P. Bartalini, L. Fanó (eds.), in Proceedings of the 1st International Workshop on Multiple Partonic Interactions at the LHC (MPI@LHC 2008), Perugia, Italy, 27–31 Oct (2008). arXiv:1003.4220

  146. CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements. Eur. Phys. J. C 76, 155 (2015). doi:10.1140/epjc/s10052-016-3988-x. arXiv:1512.00815

  147. CDF Collaboration, R. Field, The Energy Dependence of the Underlying Event in Hadronic Collisions, in Proceedings, The 2013 European Physical Society Conference on High Energy Physics (EPS-HEP 2013), volume EPS-HEP2013, p. 422. Stockholm, Sweden, 18-24 July 2013

    Google Scholar 

  148. ATLAS Collaboration, New ATLAS event generator tunes to 2010 data, Technical report ATL-PHYS-PUB-2011-008, CERN, Geneva, 2011

    Google Scholar 

  149. P.Z. Skands, Tuning Monte Carlo Generators: The Perugia Tunes. Phys. Rev. D 82, 074018 (2010). doi:10.1103/PhysRevD.82.074018. arXiv:1005.3457

    Article  ADS  Google Scholar 

  150. J.M. Katzy, QCD Monte-Carlo model tunes for the LHC. Prog. Part. Nucl. Phys. 73, 141 (2013). doi:10.1016/j.ppnp.2013.08.002

    Article  ADS  Google Scholar 

  151. S. Catani, F. Krauss, R. Kuhn, B.R. Webber, QCD matrix elements + parton showers. JHEP 11, 063 (2001). doi:10.1088/1126-6708/2001/11/063. arXiv:hep-ph/0109231

    Article  ADS  Google Scholar 

  152. F. Krauss, Matrix elements and parton showers in hadronic interactions. JHEP 08, 015 (2002). doi:10.1088/1126-6708/2002/08/015. arXiv:hep-ph/0205283

    Article  ADS  Google Scholar 

  153. L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements. JHEP 05, 046 (2002). doi:10.1088/1126-6708/2002/05/046. arXiv:hep-ph/0112284

    Article  Google Scholar 

  154. M.L. Mangano, M. Moretti, F. Piccinini, M. Treccani, Matching matrix elements and shower evolution for top-quark production in hadronic collisions. JHEP 01, 013 (2007). doi:10.1088/1126-6708/2007/01/013. arXiv:hep-ph/0611129

    Article  ADS  Google Scholar 

  155. J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions. Eur. Phys. J. C 53, 473 (2008). doi:10.1140/epjc/s10052-007-0490-5. arXiv:0706.2569

    Article  ADS  Google Scholar 

  156. S. Catani, M.H. Seymour, A General algorithm for calculating jet cross-sections in NLO QCD. Nucl. Phys. B 485, 291 (1997). doi:10.1016/S0550-3213(96)00589-5. arXiv:hep-ph/9605323

    Article  ADS  Google Scholar 

  157. S. Frixione, Z. Kunszt, A. Signer, Three jet cross-sections to next-to-leading order. Nucl. Phys. B 467, 399 (1996). doi:10.1016/0550-3213(96)00110-1. arXiv:hep-ph/9512328

    Article  ADS  Google Scholar 

  158. D.A. Kosower, Antenna factorization of gauge theory amplitudes. Phys. Rev. D 57, 5410 (1998). doi:10.1103/PhysRevD.57.5410. arXiv:hep-ph/9710213

    Article  ADS  Google Scholar 

  159. Z. Nagy, D.E. Soper, General subtraction method for numerical calculation of one-loop QCD matrix elements. JHEP 09, 055 (2003). doi:10.1088/1126-6708/2003/09/055. arXiv:hep-ph/0308127

    Article  ADS  Google Scholar 

  160. S. Frixione, B.R. Webber, Matching NLO QCD computations and parton shower simulations. JHEP 06, 029 (2002). doi:10.1088/1126-6708/2002/06/029. arXiv:hep-ph/0204244

    Article  ADS  Google Scholar 

  161. P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms. JHEP 11, 040 (2004). doi:10.1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146

    Article  ADS  Google Scholar 

  162. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations with Parton Shower simulations: the POWHEG method. JHEP 11, 070 (2007). doi:10.1088/1126-6708/2007/11/070. arXiv:0709.2092

    Article  ADS  Google Scholar 

  163. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX. JHEP 06, 043 (2010). doi:10.1007/JHEP06(2010)043. arXiv:1002.2581

    Article  ADS  MATH  Google Scholar 

  164. S. Höche, F. Krauss, M. Schönherr, F. Siegert, A critical appraisal of NLO+PS matching methods. JHEP 09, 049 (2012). doi:10.1007/JHEP09(2012)049. arXiv:1111.1220

    Article  Google Scholar 

  165. J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). doi:10.1007/JHEP07(2014)079. arXiv:1405.0301

    Article  ADS  Google Scholar 

  166. K. Hamilton, P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements. JHEP 06, 039 (2010). doi:10.1007/JHEP06(2010)039. arXiv:1004.1764

    Article  ADS  Google Scholar 

  167. S. Höche, F. Krauss, M. Schönherr, F. Siegert, NLO matrix elements and truncated showers. JHEP 08, 123 (2011). doi:10.1007/JHEP08(2011)123. arXiv:1009.1127

    Article  ADS  Google Scholar 

  168. S. Höche, F. Krauss, M. Schönherr, F. Siegert, QCD matrix elements + parton showers: the NLO case. JHEP 04, 027 (2013). doi:10.1007/JHEP04(2013)027. arXiv:1207.5030

    Article  Google Scholar 

  169. L. Lönnblad, S. Prestel, Merging multi-leg NLO matrix elements with parton showers. JHEP 03, 166 (2013). doi:10.1007/JHEP03(2013)166. arXiv:1211.7278

    Article  ADS  Google Scholar 

  170. K. Hamilton, P. Nason, C. Oleari, G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching. JHEP 05, 082 (2013). doi:10.1007/JHEP05(2013)082. arXiv:1212.4504

    Article  ADS  Google Scholar 

  171. S. Höche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower. Phys. Lett. B 748, 74 (2015). doi:10.1016/j.physletb.2015.06.060. arXiv:1402.6293

    Article  ADS  Google Scholar 

  172. G.F. Sterman, S. Weinberg, Jets from quantum chromodynamics. Phys. Rev. Lett. 39, 1436 (1977). doi:10.1103/PhysRevLett.39.1436

    Article  ADS  Google Scholar 

  173. JADE Collaboration, Experimental studies on multi-jet production in e+ e- annihilation at PETRA energies. Z. Phys. C 33, 23 (1986). doi:10.1007/BF01410449

  174. B. Flaugher and K. Meier, A Compilation of jet finding algorithms, in Proceedings, 5th DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), p. 128. Snowmass, CO, USA, June 25–July 13, 1990

    Google Scholar 

  175. J. E. Huth et al., Towards a standardization of jet definitions, in Proceedings, 5th DPF Summer Study on High-energy Physics: Research Directions for the Decade (Snowmass 90), p. 134. Snowmass, CO, USA, June 25–July 13, 1990

    Google Scholar 

  176. G.C. Blazey et al., Run II jet physics, in Proceedings, Physics at Run II: QCD and Weak Boson Physics Workshop, p. 47. Batavia, IL, USA, March 4–6, June 3–4, November 4–6, 1999. arXiv:hep-ex/0005012

  177. C. Buttar et al., Standard Model Handles and Candles Working Group: Tools and Jets Summary Report, in Proceedings, 5th Les Houches Workshop 2007 on Physics at TeV colliders (Les Houches 2007), p. 121. Les Houches, France, 11-29 June 2007. arXiv:0803.0678

  178. G.P. Salam, Towards jetography. Eur. Phys. J. C 67, 637 (2010). doi:10.1140/epjc/s10052-010-1314-6. arXiv:0906.1833

    Article  ADS  Google Scholar 

  179. M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). doi:10.1140/epjc/s10052-012-1896-2. arXiv:1111.6097

    Article  ADS  Google Scholar 

  180. CDF Collaboration, Measurement of the inclusive jet cross section at the Fermilab Tevatron \({p\bar{p}}\) collider using a cone-based jet algorithm. Phys. Rev. D 78, 052006 (2008). doi:10.1103/PhysRevD.79.119902, 10.1103/PhysRevD.78.052006, arXiv:0807.2204

  181. D0 Collaboration, Measurement of the inclusive jet cross section in \(p \bar{p}\) collisions at \(\sqrt{s}=1.96\) TeV. Phys. Rev. D 85 (2012) 052006. doi:10.1103/PhysRevD.85.052006, arXiv:1110.3771. Long author list—awaiting processing

  182. G.P. Salam, G. Soyez, A practical Seedless Infrared-Safe Cone jet algorithm. JHEP 05, 086 (2007). doi:10.1088/1126-6708/2007/05/086. arXiv:0704.0292

    Article  ADS  Google Scholar 

  183. S. Catani, B.R. Webber, Infrared safe but infinite: soft gluon divergences inside the physical region. JHEP 10, 005 (1997). doi:10.1088/1126-6708/1997/10/005. arXiv:hep-ph/9710333

    Article  ADS  Google Scholar 

  184. T. Hebbeker, Tests of quantum chromodynamics in hadronic decays of \(Z^0\) bosons produced in \(e^{+} e^{-}\) annihilation. Phys. Rept. 217, 69 (1992). doi:10.1016/0370-1573(92)90181-X

    Article  ADS  Google Scholar 

  185. S. Catani et al., New clustering algorithm for multi - jet cross-sections in e+ e- annihilation. Phys. Lett. B 269, 432 (1991). doi:10.1016/0370-2693(91)90196-W

    Article  ADS  Google Scholar 

  186. M. Dasgupta, L. Magnea, G.P. Salam, Non-perturbative QCD effects in jets at hadron colliders. JHEP 02, 055 (2008). doi:10.1088/1126-6708/2008/02/055. arXiv:0712.3014

    Article  ADS  Google Scholar 

  187. UA1 Collaboration, Hadronic Jet Production at the CERN Proton-Antiproton Collider. Phys. Lett. B 132, 214 (1983). doi:10.1016/0370-2693(83)90254-X

    Article  ADS  Google Scholar 

  188. UA2 Collaboration, Observation of very large transverse momentum jets at the CERN \(\bar{p}p\) Collider. Phys. Lett. B 118, 203 (1982). doi:10.1016/0370-2693(82)90629-3

    Article  Google Scholar 

  189. UA2 Collaboration, Measurement of production and properties of jets at the CERN anti-p p collider. Z. Phys. C 20, 117 (1983). doi:10.1007/BF01573214

    Article  Google Scholar 

  190. M. Cacciari, G.P. Salam, Dispelling the \(N^{3}\) myth for the \(k_t\) jet-finder. Phys. Lett. B 641, 57 (2006). doi:10.1016/j.physletb.2006.08.037. arXiv:hep-ph/0512210

    Article  ADS  Google Scholar 

  191. S.D. Ellis, J. Huston, M. Tönnesmann, On building better cone jet algorithms. eConf C010630 (2001) 513, arXiv:hep-ph/0111434

  192. J. Berger, Search for the Higgs Boson Produced via Vector-Boson Fusion in the Decay Channel H \(\rightarrow \tau \tau \). PhD thesis, KIT (Karlsruher Institut für Technologie), Jun, 2014

    Google Scholar 

  193. M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets. JHEP 04, 005 (2008). doi:10.1088/1126-6708/2008/04/005. arXiv:0802.1188

    Google Scholar 

  194. S.D. Ellis, D.E. Soper, Successive combination jet algorithm for hadron collisions. Phys. Rev. D 48, 3160 (1993). doi:10.1103/PhysRevD.48.3160. arXiv:hep-ph/9305266

    Article  ADS  Google Scholar 

  195. Y.L. Dokshitzer, G.D. Leder, S. Moretti, B.R. Webber, Better jet clustering algorithms. JHEP 08, 001 (1997). doi:10.1088/1126-6708/1997/08/001. arXiv:hep-ph/9707323

  196. M. Wobisch, T. Wengler, Hadronization corrections to jet cross-sections in deep inelastic scattering, in Proceedings, Monte Carlo Generators for HERA Physics. Hamburg, Germany, 1998–1999, 1998. arXiv:hep-ph/9907280

  197. M. Cacciari, G.P. Salam, G. Soyez, The anti-\(k_t\) jet clustering algorithm. JHEP 04, 063 (2008). doi:10.1088/1126-6708/2008/04/063. arXiv:0802.1189

    Article  ADS  Google Scholar 

  198. CMS Collaboration, Measurement of the underlying event activity in \(pp\) collisions at \(\sqrt{s} = 0.9\) and 7 TeV with the novel jet-area/median approach, JHEP 08 (2012) 130. doi:10.1007/JHEP08(2012)130, arXiv:1207.2392

  199. R. Barlow et al., Data Analysis in High Energy Physics, 1st edn. (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013)

    Google Scholar 

  200. F.I. Olness, D.E. Soper, Correlated theoretical uncertainties for the one-jet inclusive cross section. Phys. Rev. D 81, 035018 (2010). doi:10.1103/PhysRevD.81.035018. arXiv:0907.5052

    Article  ADS  Google Scholar 

  201. C. Anastasiou, L.J. Dixon, K. Melnikov, F. Petriello, High precision QCD at hadron colliders: electroweak gauge boson rapidity distributions at NNLO. Phys. Rev. D 69, 094008 (2004). doi:10.1103/PhysRevD.69.094008. arXiv:hep-ph/0312266

    Article  ADS  Google Scholar 

  202. M. Cacciari, N. Houdeau, Meaningful characterisation of perturbative theoretical uncertainties. JHEP 09, 039 (2011). doi:10.1007/JHEP09(2011)039. arXiv:1105.5152

    Article  ADS  Google Scholar 

  203. E. Bagnaschi, M. Cacciari, A. Guffanti, L. Jenniches, An extensive survey of the estimation of uncertainties from missing higher orders in perturbative calculations. JHEP 02, 133 (2015). doi:10.1007/JHEP02(2015)133. arXiv:1409.5036

    Article  ADS  Google Scholar 

  204. M. Cacciari et al., The t anti-t cross-section at 1.8 TeV and 1.96 TeV: A Study of the systematics due to parton densities and scale dependence. JHEP 04 (2004) 068. doi:10.1088/1126-6708/2004/04/068, arXiv:hep-ph/0303085

  205. A. Banfi, G.P. Salam, G. Zanderighi, Phenomenology of event shapes at hadron colliders. JHEP 06, 038 (2010). doi:10.1007/JHEP06(2010)038. arXiv:1001.4082

    Article  ADS  MATH  Google Scholar 

  206. G. Grunberg, Renormalization Group Improved Perturbative QCD. Phys. Lett. B 95, 70 (1980). doi:10.1016/0370-2693(80)90402-5. [Erratum: Phys. Lett. B110, 501(1982)]

  207. J. Kubo, S. Sakakibara, Equivalence of the fastest apparent convergence criterion and the principle of minimal sensitivity in perturbative quantum chromodynamics. Phys. Rev. D 26, 3656 (1982). doi:10.1103/PhysRevD.26.3656

    Article  ADS  Google Scholar 

  208. P.M. Stevenson, Resolution of the renormalization scheme ambiguity in perturbative QCD. Phys. Lett. B 100, 61 (1981). doi:10.1016/0370-2693(81)90287-2

    Article  ADS  Google Scholar 

  209. P.M. Stevenson, Optimized perturbation theory. Phys. Rev. D 23, 2916 (1981). doi:10.1103/PhysRevD.23.2916

    Article  ADS  Google Scholar 

  210. S.J. Brodsky, G.P. Lepage, P.B. Mackenzie, On the elimination of scale ambiguities in perturbative quantum chromodynamics. Phys. Rev. D 28, 228 (1983). doi:10.1103/PhysRevD.28.228

    Article  ADS  Google Scholar 

  211. S.J. Brodsky, L. Di Giustino, Setting the renormalization scale in QCD: the principle of maximum conformality. Phys. Rev. D 86, 085026 (2012). doi:10.1103/PhysRevD.86.085026. arXiv:1107.0338

    Article  ADS  Google Scholar 

  212. S.J. Brodsky, M. Mojaza, X.-G. Wu, Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations. Phys. Rev. D 89, 014027 (2014). doi:10.1103/PhysRevD.89.014027. arXiv:1304.4631

    Article  ADS  Google Scholar 

  213. H.-Y. Bi et al., Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale. Phys. Lett. B 748 (2015) 13–18. doi:10.1016/j.physletb.2015.06.056, arXiv:1505.04958

  214. M. Rubin, G.P. Salam, S. Sapeta, Giant QCD K-factors beyond NLO. JHEP 09, 084 (2010). doi:10.1007/JHEP09(2010)084. arXiv:1006.2144

  215. A. David, G. Passarino, How well can we guess theoretical uncertainties? Phys. Lett. B 726, 266 (2013). doi:10.1016/j.physletb.2013.08.025. arXiv:1307.1843

    Article  ADS  Google Scholar 

  216. CDF Collaboration, Inclusive jet cross section in \({\bar{p} p}\) collisions at \(\sqrt{s}=1.8\) TeV. Phys. Rev. Lett. 77, 438 (1996). doi:10.1103/PhysRevLett.77.438. arXiv:hep-ex/9601008

  217. J. Huston et al., Large transverse momentum jet production and the gluon distribution inside the proton. Phys. Rev. Lett. 77, 444 (1996). doi:10.1103/PhysRevLett.77.444. arXiv:hep-ph/9511386

    Article  ADS  Google Scholar 

  218. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). doi:10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002

    Article  ADS  Google Scholar 

  219. S. Dulat et al., New parton distribution functions from a global analysis of quantum chromodynamics. Phys. Rev. D 93, 033006 (2016). doi:10.1103/PhysRevD.93.033006. arXiv:1506.07443

  220. E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, On the heavy quark content of the nucleon. Phys. Lett. B 291, 325 (1992). doi:10.1016/0370-2693(92)91053-C

    Article  ADS  Google Scholar 

  221. E. Laenen, S. Riemersma, J. Smith, W.L. van Neerven, Complete O(\(\alpha _s\)) corrections to heavy flavor structure functions in electroproduction. Nucl. Phys. B 392, 162 (1993). doi:10.1016/0550-3213(93)90201-Y

    Article  ADS  Google Scholar 

  222. S. Riemersma, J. Smith, W.L. van Neerven, Rates for inclusive deep inelastic electroproduction of charm quarks at HERA. Phys. Lett. B 347, 143 (1995). doi:10.1016/0370-2693(95)00036-K. arXiv:hep-ph/9411431

    Article  ADS  Google Scholar 

  223. R. S. Thorne, W.K. Tung, PQCD Formulations with Heavy Quark Masses and Global Analysis, in Proceedings, 4th Workshop on the Implications of HERA for LHC Physics (HERA and the LHC). Geneva, Switzerland, 26–30 May 2008. arXiv:0809.0714

  224. N. Arkani-Hamed, T. Han, M. Mangano, L.-T. Wang, Physics Opportunities of a 100 TeV Proton-Proton Collider, arXiv:1511.06495

  225. S. Alekhin, J. Blümlein, S. Moch, Parton distribution functions and benchmark cross sections at NNLO. Phys. Rev. D 86, 054009 (2012). doi:10.1103/PhysRevD.86.054009. arXiv:1202.2281

    Article  ADS  Google Scholar 

  226. J.F. Owens, A. Accardi, W. Melnitchouk, Global parton distributions with nuclear and finite-\(Q^2\) corrections. Phys. Rev. D 87, 094012 (2013). doi:10.1103/PhysRevD.87.094012. arXiv:1212.1702

    Article  ADS  Google Scholar 

  227. H.-L. Lai et al., New parton distributions for collider physics. Phys. Rev. D 82, 074024 (2010). doi:10.1103/PhysRevD.82.074024. arXiv:1007.2241

    Article  ADS  Google Scholar 

  228. H1 and ZEUS Collaborations, Combined measurement and QCD analysis of the inclusive \(e^\pm p\) scattering cross sections at HERA. J. High Energy Phys. 01, 109 (2010). doi:10.1007/JHEP01(2010)109. arXiv:0911.0884

  229. M. Glück, P. Jimenez-Delgado, E. Reya, Dynamical parton distributions of the nucleon and very small-x physics. Eur. Phys. J. C 53, 355 (2008). doi:10.1140/epjc/s10052-007-0462-9. arXiv:0709.0614

    Article  ADS  Google Scholar 

  230. M. Glück, P. Jimenez-Delgado, E. Reya, C. Schuck, On the role of heavy flavor parton distributions at high energy colliders. Phys. Lett. B 664, 133 (2008). doi:10.1016/j.physletb.2008.04.063. arXiv:0801.3618

    Article  ADS  Google Scholar 

  231. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Uncertainties on \(\alpha _S\) in global PDF analyses and implications for predicted hadronic cross sections. Eur. Phys. J. C 64, 653 (2009). doi:10.1140/epjc/s10052-009-1164-2. arXiv:0905.3531

    Article  ADS  Google Scholar 

  232. R.D. Ball et al., Impact of heavy quark masses on parton distributions and LHC phenomenology. Nucl. Phys. B 849, 296 (2011). doi:10.1016/j.nuclphysb.2011.03.021. arXiv:1101.1300

    Article  ADS  Google Scholar 

  233. R.D. Ball et al., Parton distributions with LHC data. Nucl. Phys. B 867, 244 (2013). doi:10.1016/j.nuclphysb.2012.10.003. arXiv:1207.1303

    Article  ADS  Google Scholar 

  234. A. Accardi et al., Constraints on large-\(x\) parton distributions from new weak boson production and deep-inelastic scattering data, arXiv:1602.03154

  235. H1 and ZEUS Collaborations, Combination of measurements of inclusive deep inelastic \({e^{\pm }p}\) scattering cross sections and QCD analysis of HERA data. Eur. Phys. J. C 75 (2015) 580. doi:10.1140/epjc/s10052-015-3710-4, arXiv:1506.06042

  236. P. Jimenez-Delgado, E. Reya, Delineating parton distributions and the strong coupling. Phys. Rev. D 89, 074049 (2014). doi:10.1103/PhysRevD.89.074049. arXiv:1403.1852

    Article  ADS  Google Scholar 

  237. L.A. Harland-Lang, A.D. Martin, P. Motylinski, R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs. Eur. Phys. J. C 75, 204 (2015). doi:10.1140/epjc/s10052-015-3397-6. arXiv:1412.3989

    Article  ADS  Google Scholar 

  238. NNPDF Collaboration, Parton distributions for the LHC Run II. JHEP 04 (2015) 040. doi:10.1007/JHEP04(2015)040, arXiv:1410.8849

  239. M.R. Whalley, D. Bourilkov, R.C. Group, The Les Houches Accord PDFs (LHAPDF) and LHAGLUE, in Proceedings, HERA and the LHC: A Workshop on the implications of HERA for LHC physics: Vol. B. Geneva, Switzerland and Hamburg, Germany, 26–27 March, 11–13 Oct, 21–24 March, 2004–2005. arXiv:hep-ph/0508110

  240. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era. Eur. Phys. J. C 75, 132 (2015). doi:10.1140/epjc/s10052-015-3318-8. arXiv:1412.7420

    Article  ADS  Google Scholar 

  241. D. Stump et al., Uncertainties of predictions from parton distribution functions. 1. The Lagrange multiplier method. Phys. Rev. D 65, 014012 (2001). doi:10.1103/PhysRevD.65.014012. arXiv:hep-ph/0101051

    Article  ADS  Google Scholar 

  242. J. Pumplin et al., Uncertainties of predictions from parton distribution functions. 2. The Hessian method. Phys. Rev. D 65, 014013 (2001). doi:10.1103/PhysRevD.65.014013. arXiv:hep-ph/0101032

    Article  ADS  Google Scholar 

  243. W.T. Giele, S. Keller, Implications of hadron collider observables on parton distribution function uncertainties. Phys. Rev. D 58, 094023 (1998). doi:10.1103/PhysRevD.58.094023. arXiv:hep-ph/9803393

    Article  ADS  Google Scholar 

  244. W.T. Giele, S.A. Keller, D.A. Kosower, Parton distribution function uncertainties, arXiv:hep-ph/0104052

  245. NNPDF Collaboration, A determination of parton distributions with faithful uncertainty estimation. Nucl. Phys. B 809 (2009) 1. doi:10.1016/j.nuclphysb.2008.09.037, arXiv:0808.1231

  246. S. Alekhin et al., HERAFitter. Eur. Phys. J. C 75, 304 (2015). doi:10.1140/epjc/s10052-015-3480-z. arXiv:1410.4412

    Article  ADS  Google Scholar 

  247. M. Botje et al., The PDF4LHC Working Group Interim Recommendations, arXiv:1101.0538

  248. J. Butterworth et al., PDF4LHC recommendations for LHC Run II. J. Phys. G 43, 023001 (2016). doi:10.1088/0954-3899/43/2/023001. arXiv:1510.03865

  249. C. Bourrely, J. Soffer, F. Buccella, A Statistical approach for polarized parton distributions. Eur. Phys. J. C 23, 487 (2002). doi:10.1007/s100520100855. arXiv:hep-ph/0109160

    Article  ADS  Google Scholar 

  250. C. Bourrely, J. Soffer, New developments in the statistical approach of parton distributions: tests and predictions up to LHC energies. Nucl. Phys. A 941, 307 (2015). doi:10.1016/j.nuclphysa.2015.06.018. arXiv:1502.02517

  251. SM and NLO Multileg Working Group Collaboration, T. Binoth et al., The SM and NLO Multileg Working Group: Summary report, in Proceedings, 6th Les Houches Workshop 2009 on Physics at TeV colliders (Les Houches 2009; dedicated to Thomas Binoth), p. 21. Les Houches, France, 8–26 June 2010. arXiv:1003.1241

  252. H.-L. Lai et al., Uncertainty induced by the QCD coupling in the CTEQ global analysis of parton distributions. Phys. Rev. D 82, 054021 (2010). doi:10.1103/PhysRevD.82.054021. arXiv:1004.4624

    Article  ADS  Google Scholar 

  253. F. Demartin et al., The impact of PDF and alphas uncertainties on Higgs Production in gluon fusion at hadron colliders. Phys. Rev. D 82, 014002 (2010). doi:10.1103/PhysRevD.82.014002. arXiv:1004.0962

    Article  ADS  Google Scholar 

  254. CMS Collaboration, Constraints on parton distribution functions and extraction of the strong coupling constant from the inclusive jet cross section in pp collisions at \(\sqrt{s}\) = 7 TeV. Eur. Phys. J. C 75, 288 (2015). doi:10.1140/epjc/s10052-015-3499-1. arXiv:1410.6765

  255. S.D. Ellis, Z. Kunszt, D.E. Soper, One-jet inclusive cross section at order \(\alpha _s^3\): quarks and gluons. Phys. Rev. Lett. 64, 2121 (1990). doi:10.1103/PhysRevLett.64.2121

    Article  ADS  Google Scholar 

  256. S.D. Ellis, Z. Kunszt, D.E. Soper, Two-jet production in hadron collisions at order \(\alpha _s^3\) in QCD. Phys. Rev. Lett. 69, 1496 (1992). doi:10.1103/PhysRevLett.69.1496

    Article  ADS  Google Scholar 

  257. J. Gao et al., MEKS: a program for computation of inclusive jet cross sections at hadron colliders. Comput. Phys. Commun. 184, 1626 (2013). doi:10.1016/j.cpc.2013.01.022. arXiv:1207.0513

    Article  ADS  Google Scholar 

  258. W.T. Giele, E.W.N. Glover, D.A. Kosower, Higher order corrections to jet cross-sections in hadron colliders. Nucl. Phys. B 403, 633 (1993). doi:10.1016/0550-3213(93)90365-V. arXiv:hep-ph/9302225

    Article  ADS  Google Scholar 

  259. Z. Nagy, Three jet cross-sections in hadron hadron collisions at next-to-leading order. Phys. Rev. Lett. 88, 122003 (2002). doi:10.1103/PhysRevLett.88.122003. arXiv:hep-ph/0110315

    Article  ADS  Google Scholar 

  260. Z. Nagy, Next-to-leading order calculation of three-jet observables in hadron hadron collisions. Phys. Rev. D 68, 094002 (2003). doi:10.1103/PhysRevD.68.094002. arXiv:hep-ph/0307268

    Article  ADS  Google Scholar 

  261. J. Currie, A. Gehrmann-De Ridder, E.W.N. Glover, J. Pires, NNLO QCD corrections to jet production at hadron colliders from gluon scattering. JHEP 01 (2014) 110. doi:10.1007/JHEP01(2014)110, arXiv:1310.3993

  262. Z. Bern et al., Four-jet production at the large hadron collider at next-to-leading order in QCD. Phys. Rev. Lett. 109, 042001 (2012). doi:10.1103/PhysRevLett.109.042001. arXiv:1112.3940

    Article  ADS  Google Scholar 

  263. S. Badger, B. Biedermann, P. Uwer, V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \(\sqrt{s}=8\) TeV. Phys. Lett. B 718, 965 (2013). doi:10.1016/j.physletb.2012.11.029. arXiv:1209.0098

    Article  ADS  Google Scholar 

  264. S. Badger, B. Biedermann, P. Uwer, V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC. Phys. Rev. D 89, 034019 (2014). doi:10.1103/PhysRevD.89.034019. arXiv:1309.6585

    Article  ADS  Google Scholar 

  265. H1 Collaboration, Measurement and QCD analysis of jet cross-sections in deep-inelastic positron-proton collisions at \(\sqrt{s}\) of 300 GeV. Eur. Phys. J. C 19, 289 (2001). doi:10.1007/s100520100621. arXiv:hep-ex/0010054

  266. T. Kluge, K. Rabbertz, M. Wobisch, FastNLO: Fast pQCD calculations for PDF fits, in 14th International Workshop on Deep Inelastic Scattering (DIS 2006), p. 483. Tsukuba, Japan, 20–24 April 2006. arXiv:hep-ph/0609285. doi:10.1142/9789812706706_0110

  267. T. Carli, G.P. Salam, F. Siegert, A Posteriori inclusion of PDFs in NLO QCD final-state calculations, in HERA and the LHC: A Workshop on the Implications of HERA for LHC Physics (Startup Meeting, CERN, 26–27 March 2004; Working Group Meeting, CERN, 17–21 Jan 2005; Final Meeting 21–24 Mar 2005) CERN. Geneva, Switzerland 11–13, 2005 (2004). arXiv:hep-ph/0510324

  268. T. Carli et al., A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: the APPLGRID Project. Eur. Phys. J. C 66, 503 (2010). doi:10.1140/epjc/s10052-010-1255-0. arXiv:0911.2985

    Article  ADS  Google Scholar 

  269. D. Britzger, K. Rabbertz, F. Stober, M. Wobisch, New features in version 2 of the fastNLO project, in Proceedings, XX. International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012), p. 217. Bonn, Germany, 26-30 March 2012. arXiv:1208.3641. doi:10.3204/DESY-PROC-2012-02/165

  270. D.A. Britzger, Regularized Unfolding of Jet Cross Sections in Deep-Inelastic \(ep\) Scattering at HERA and Determination of the Strong Coupling Constant. PhD thesis, Universität Hamburg, June, 2013

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Rabbertz .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rabbertz, K. (2017). Theoretical Framework. In: Jet Physics at the LHC. Springer Tracts in Modern Physics, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-42115-5_2

Download citation

Publish with us

Policies and ethics