Skip to main content

The Carotid Body Does Not Mediate the Acute Ventilatory Effects of Leptin

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 860))

Abstract

Leptin is a hormone produced mostly in adipose tissue and playing a key role in the control of feeding and energy expenditure aiming to maintain a balance between food intake and metabolic activity. In recent years, it has been described that leptin might also contributes to control ventilation as the administration of the hormone reverses the hypoxia and hypercapnia commonly encountered in ob/ob mice which show absence of the functional hormone. In addition, it has been shown that the carotid body (CB) of the rat expresses leptin as well as the functional leptin-B receptor. Therefore, the possibility exists that the ventilatory effects of leptin are mediated by the CB chemoreceptors. In the experiments described below we confirm the stimulatory effect of leptin on ventilation, finding additionally that the CB does not mediate the instant to instant control of ventilation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguer C, Harper ME (2012) Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects. Best Pract Res Clin Endocrinol Metab 26:805–819

    Google Scholar 

  • Bickelmann AG, Burwell CS, Robin ED, Whaley RD (1956) Extreme obesity associated with alveolar hypoventilation; a Pickwickian syndrome. Am J Med 21:811–818

    Article  PubMed  CAS  Google Scholar 

  • Cao H (2014) Adipocytokines in obesity and metabolic disease. J Endocrinol 220:T47–T59

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Chaiban JT, Bitar FF, Azar ST (2008) Effect of chronic hypoxia on leptin, insulin, adiponectin, and ghrelin. Metabolism 57:1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Chang Z, Ballou E, Jiao W, McKenna KE, Morrison SF, McCrimmon DR (2013) Systemic leptin produces a long-lasting increase in respiratory motor output in rats. Front Physiol 4:16

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ciriello J, Moreau JM (2012) Leptin signaling in the nucleus of the solitary tract alters the cardiovascular responses to activation of the chemoreceptor reflex. Am J Physiol Regul Integr Comp Physiol 303:R727–R736

    Article  PubMed  CAS  Google Scholar 

  • Ciriello J, Moreau JM (2013) Systemic administration of leptin potentiates the response of neurons in the nucleus of the solitary tract to chemoreceptor activation in the rat. Neuroscience 229:88–99

    Article  PubMed  CAS  Google Scholar 

  • Conde SV, Obeso A, Rigual R, Monteiro EC, Gonzalez C (2006) Function of the rat carotid body chemoreceptors in ageing. J Neurochem 99:711–723

    Article  PubMed  CAS  Google Scholar 

  • González C, Almaraz L, Obeso A, Rigual R (1992) Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci 15:146–153

    Article  PubMed  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A, Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74:829–898

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Vaquero LM, López-López JR, Pérez-García MT (2009) Oxygen-sensitive potassium channels in chemoreceptor cell physiology: making a virtue of necessity. Ann N Y Acad Sci 1177:82–88

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Martín MC, Vega-Agapito MV, Conde SV, Castañeda J, Bustamante R, Olea E, Perez-Vizcaino F, Gonzalez C, Obeso A (2011) Carotid body function and ventilatory responses in intermittent hypoxia. Evidence for anomalous brainstem integration of arterial chemoreceptor input. J Cell Physiol 226:1961–1969

    Article  PubMed  Google Scholar 

  • Harlan SM, Rahmouni K (2013) Neuroanatomical determinants of the sympathetic nerve responses evoked by leptin. Clin Auton Res 23:1–7

    Article  PubMed  PubMed Central  Google Scholar 

  • Inyushkin AN, Inyushkina EM, Merkulova NA (2009) Respiratory responses to microinjections of leptin into the solitary tract nucleus. Neurosci Behav Physiol 39:231–240

    Article  PubMed  CAS  Google Scholar 

  • Katz M, Finley J, Erickson J, Brosenitsch T (1997) Organization and development of chemoafferent input to the brainstem. In: Gonzalez C (ed) Carotid body chemoreceptors. Springer, NY, pp 159–170

    Google Scholar 

  • Kemp PJ (2005) Hemeoxygenase-2 as an O2 sensor in K+ channel-dependent chemotransduction. Biochem Biophys Res Commun 338:648–652

    Article  PubMed  CAS  Google Scholar 

  • Kumar P (2009) Systemic effects resulting from carotid body stimulation-invited article. Adv Exp Med Biol 648:223–233

    Article  PubMed  Google Scholar 

  • Malli F, Papaioannou AI, Gourgoulianis KI, Daniil Z (2010) The role of leptin in the respiratory system: an overview. Respir Res 11:152

    Article  PubMed  PubMed Central  Google Scholar 

  • Mark AL (2013) Selective leptin resistance revisited. Am J Physiol Regul Integr Comp Physiol 305:R566–R581

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Messenger SA, Ciriello J (2012) Effects of intermittent hypoxia on leptin signalling in the carotid body. Neuroscience 232:216–225

    Article  PubMed  Google Scholar 

  • Messenger SA, Ciriello J (2013) Effects of intermittent hypoxia on leptin signalling in the carotid body. Neuroscience 232:216–225

    Article  PubMed  CAS  Google Scholar 

  • Messenger SA, Moreau JM, Ciriello J (2012) Intermittent hypoxia and systemic leptin administration induces pSTAT3 and Fos/Fra-1 in the carotid body. Brain Res 1446:56–70

    Article  PubMed  CAS  Google Scholar 

  • Messenger SA, Moreau JM, Ciriello J (2013) Effect of chronic intermittent hypoxia on leptin and leptin receptor protein expression in the carotid body. Brain Res 1513:51–60

    Article  PubMed  CAS  Google Scholar 

  • Monteiro TC, Batuca JR, Obeso A, González C, Monteiro EC (2011) Carotid body function in aged rats: responses to hypoxia, ischemia, dopamine, and adenosine. Age (Dordr) 33:337–350

    Article  CAS  Google Scholar 

  • O’Donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR, Smith PL (1999) Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 159:1477–1484

    Article  PubMed  Google Scholar 

  • Olea E, Agapito MT, Gallego-Martin T, Rocher A, Gomez-Niño A, Obeso A, Gonzalez C, Yubero S (2014) Intermittent hypoxia and diet-induced obesity: effects on oxidative status, sympathetic tone, plasma glucose and insulin levels, and arterial pressure. J Appl Physiol (1985) 117:706–719

    Google Scholar 

  • Olson AL, Zwillich C (2005) The obesity hypoventilation syndrome. Am J Med 118:948–956

    Article  PubMed  Google Scholar 

  • Peers C (1997) Oxygen-sensitive ion channels. Trends Pharmacol Sci 18:405–408

    Article  PubMed  CAS  Google Scholar 

  • Porzionato A, Rucinski M, Macchi V, Stecco C, Castagliuolo I, Malendowicz LK, De Caro R (2011) Expression of leptin and leptin receptor isoforms in the rat and human carotid body. Brain Res 1385:56–67

    Article  PubMed  CAS  Google Scholar 

  • Simler N, Malgoyre A, Koulmann N, Alonso A, Peinnequin A, Bigard AX (2007) Hypoxic stimulus alters hypothalamic AMP-activated protein kinase phosphorylation concomitant to hypophagia. J Appl Physiol (1985) 102:2135–2141

    Google Scholar 

  • Vicario I, Rigual R, Obeso A, Gonzalez C (2000) Characterization of the synthesis and release of catecholamine in the rat carotid body in vitro. Am J Physiol Cell Physiol 278:C490–C499

    PubMed  CAS  Google Scholar 

  • Zeng J, Patterson BW, Klein S, Martin DR, Dagogo-Jack S, Kohrt WM, Miller SB, Landt M (1997) Whole body leptin kinetics and renal metabolism in vivo. Am J Physiol 273:E1102–E1106

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by grants BFU2012-37459 and CIBER CB06/06/0050 to CG (Spain) and EXPL/NEU-SCC/2183/ 2013 to SVC from Portugal. Many thanks to Ana Gordillo for her technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Olea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olea, E. et al. (2015). The Carotid Body Does Not Mediate the Acute Ventilatory Effects of Leptin. In: Peers, C., Kumar, P., Wyatt, C., Gauda, E., Nurse, C., Prabhakar, N. (eds) Arterial Chemoreceptors in Physiology and Pathophysiology. Advances in Experimental Medicine and Biology, vol 860. Springer, Cham. https://doi.org/10.1007/978-3-319-18440-1_43

Download citation

Publish with us

Policies and ethics