Skip to main content

Artificial Neural Network Modeling of Relative Humidity and Air Temperature Spatial and Temporal Distributions Over Complex Terrains

  • Conference paper
  • First Online:
Book cover Pattern Recognition Applications and Methods

Abstract

In this work we present a methodological approach of applying Artificial Neural Networks (ANN) for modeling of both the air temperature (AT) and relative humidity (RH) spatial and temporal distributions over complex terrains. A number of implementation issues are discussed, along with their relative advantages and limitations. Moreover, after the introduction of a set of metrics, the accuracy of the evaluation of ANN based spatial and time series AT and RH modeling in the case of a specific region is examined, by applying a number of alternative feed forward ANN topologies. The Levenberg-Marquardt back propagation algorithm was used for the ANNs training in the temporal forecasting of AT and RH, with the optimum architecture being the one that minimizes the Mean Absolute Error on the validation set. The Radial Basis Function and the Multilayer Perceptrons non-linear Feed Forward ANNs schemes are compared for the spatial estimation of AT and RH. We found that the spatial and temporal AT and RH variability over complex terrains can be modeled efficiently by ANNs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Price, D.T., McKenney, D.W., Nalder, I.A., Hutchinson, M.F., Kesteven, J.L.: A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agric. For. Meteorol. 101(2–3), 81–94 (2000). doi:10.1016/S0168-1923(99)00169-0

    Article  Google Scholar 

  2. Chai, H., Cheng, W., Zhou, C., Chen, X., Ma, X., Zhao, S.: Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur autonomous region, China. Nat. Sci. 3(12), 999–1010 (2011). doi:10.4236/ns.2011.312125

    Google Scholar 

  3. Deligiorgi, D., Philippopoulos, K.: Spatial interpolation methodologies in urban air pollution modeling: application for the greater area of metropolitan Athens, Greece. In: Nejadkoorki, F. (ed.) Advanced Air Pollution. InTech Publishers, Rijeka (2011). doi:10.5772/17734

  4. Deligiorgi, D., Philippopoulos, K., Kouroupetroglou, G.: Artificial neural network based methodologies for the estimation of wind speed. In: Cavallaro, F.F. (ed.) Assessment and Simulation Tools for Sustainable Energy Systems. Springer, Berlin (2013)

    Google Scholar 

  5. Snell, S., Gopal, S., Kaufmann, R.: Spatial Interpolation of surface air temperatures using artificial neural networks: evaluating their use for downscaling GCMs. J. Clim. 13(5), 886–895 (2000). doi:10.1175/1520-0442(2000)013<0886:SIOSAT>2.0.CO;2

    Article  Google Scholar 

  6. Chronopoulos, K., Tsiros, I., Dimopoulos, I., Alvertos, N.: An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. J. Environ. Sci. Health Part A: Tox./Hazard. Subst. Environ. Eng. 43(14), 1752–1757 (2008). doi:10.1080/10934520802507621

    Article  Google Scholar 

  7. Tasadduq, I., Rehman, S., Bubshait, K.: Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renew. Energy 25(4), 545–554 (2002). doi:10.1016/S0960-1481(01)00082-9

    Article  Google Scholar 

  8. Dombayc, O., Golcu, M.: Daily means ambient temperature prediction using artificial neural network method: a case study of Turkey. Renew. Energy 34(3), 1158–1161 (2009). doi:10.1016/j.renene.2008.07.007

    Article  Google Scholar 

  9. Smith, B., Hoogenboom, G., McClendon, R.: Artificial neural networks for automated year-round temperature prediction. Comput. Electron. Agric. 68(1), 52–61 (2009). doi:10.1016/j.compag. 2009.04.003

    Article  Google Scholar 

  10. Mustafaraj, G., Lowry, G., Chen, J.: Prediction of room temperature and relative humidity by autoregressive linear and nonlinear neural network models for an open office. Energy Build. 43(6), 1452–1460 (2011). doi:10.1016/j.enbuild.2011.02.007

    Article  Google Scholar 

  11. Mihalakakou, G., Flocas, H., Santamouris, M., Helmis, C.: Application of neural networks to the simulation of the heat island over Athens, Greece, using synoptic types as a predictor. J. Appl. Meteorol. 41(5), 519–527 (2002). doi:10.1175/1520-0450(2002)041<519:AONNTT>2.0.CO;2

    Article  Google Scholar 

  12. Fausett, L.V.: Fundamentals Neural Networks: Architecture, Algorithms, and Applications. Prentice-Hall Inc., New Jersey (1994)

    Google Scholar 

  13. Bishop, C.M.: Neural Networks For Pattern Recognition. Oxford University Press, Cambridge (1995)

    Google Scholar 

  14. Jain, A.K., Mao, J., Mohiuddin, K.M.: Artificial neural networks: a tutorial. Computer 29(3), 31–44 (1996). doi:10.1109/2.485891

    Article  Google Scholar 

  15. Zhang, G.P., Patuwo, E., Hu, M.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998). doi:10.1016/S0169-2070(97)00044-7

    Article  Google Scholar 

  16. Cybenco, G.: Approximation by superposition of a sigmoidal function. Math. Control Signals Syst. 2(4), 303–314 (1989). doi:10.1007/BF02551274

    Article  Google Scholar 

  17. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2(5), 359–366 (1989). doi:10.1016/0893-6080(89)90020-8

    Article  Google Scholar 

  18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986). doi:10.1038/323533a0

    Article  Google Scholar 

  19. Yu, H., Wilamowski, B.M.: Levenberg-Marquardt training. In: Wilamowski, B.M., Irwin, J.D. (eds.) Industrial Electronics Handbook, 2nd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  20. Fox, D.G.: Judging air quality model performance. Bull. Am. Meteorol. Soc. 62(5), 599–609 (1981). doi:10.1175/1520-0477(1981)062<0599:JAQMP>2.0.CO;2

    Article  Google Scholar 

  21. Willmott, C.J.: Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63(11), 1309–1313 (1982). doi:10.1175/1520-0477(1982)063<1309:SCOTEO>2.0.CO;2

    Article  Google Scholar 

  22. Koletsis, I., Lagouvardos, K., Kotroni, V., Bartzokas, A.: The interaction of northern wind flow with the complex topography of Crete island-Part 1: observational study. Nat. Hazards Earth Syst. Sci. 9, 1845–1855 (2009). doi:10.5194/nhess-9-1845-2009

    Article  Google Scholar 

  23. Koletsis, I., Lagouvardos, K., Kotroni, V., Bartzokas, A.: The interaction of northern wind flow with the complex topography of Crete island-Part 2: numerical study. Nat. Hazards Earth Syst. Sci. 10, 1115–1127 (2010). doi:10.5194/nhess-10-1115-2010

    Article  Google Scholar 

  24. Kotroni, V., Lagouvardos, K., Lalas, D.: The effect of the island of Crete on the etesian winds over the Aegean sea. Q. J. R. Meteorol. Soc. 127(576), 1917–1937 (2001). doi:10.1002/qj.49712757604

    Article  Google Scholar 

  25. Deligiorgi, D., Kolokotsa, D., Papakostas, T., Mantou, E.: Analysis of the wind field at the broader area of Chania, Crete. In: 3rd IASME/WSEAS International Conference on Energy, Environment and Sustainable Development, pp. 270–275. Agios Nikolaos, Crete: World Scientific and Engineering Academy and Society Press (2007). Retrieved from:http://www.wseas.us/e-rary/conferences/2007creteeeesd/papers/562-194.pdf

  26. Gardner, M.W., Dorling, S.R.: Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32(14–15), 2627–2636 (1998). doi:10.1016/S1352-2310(97)00447-0

    Article  Google Scholar 

  27. Heaton, J.: Introduction to Neural Networks with Java. Heaton Research Inc, Chesterfield (2005)

    Google Scholar 

  28. Powel, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation. Clarendon Press, Oxford (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Deligiorgi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Philippopoulos, K., Deligiorgi, D., Kouroupetroglou, G. (2015). Artificial Neural Network Modeling of Relative Humidity and Air Temperature Spatial and Temporal Distributions Over Complex Terrains. In: Fred, A., De Marsico, M. (eds) Pattern Recognition Applications and Methods. Advances in Intelligent Systems and Computing, vol 318. Springer, Cham. https://doi.org/10.1007/978-3-319-12610-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-12610-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-12609-8

  • Online ISBN: 978-3-319-12610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics