Skip to main content

Function Spaces for Second-Order Polynomial Time

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8493))

Abstract

In the context of second-order polynomial-time computability, we prove that there is no general function space construction. We proceed to identify restrictions on the domain or the codomain that do provide a function space with polynomial-time function evaluation containing all polynomial-time computable functions of that type.

As side results we show that a polynomial-time counterpart to admissibility of a representation is not a suitable criterion for natural representations, and that the Weihrauch degrees embed into the polynomial-time Weihrauch degrees.

A full version containing the omitted proofs is available on the arXiv as [18].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, A.: Realizability as the connection between computable and constructive mathematics. Tutorial at CCA 2004, notes (2004)

    Google Scholar 

  2. Bauer, A.: A relationship between equilogical spaces and type two effectivity. Mathematical Logic Quarterly 48(1), 1–15 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Beame, P., Cook, S., Edmonds, J., Impagliazzo, R., Pitassi, T.: The relative complexity of NP search problems. Journal of Computer and System Science 57, 3–19 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brattka, V., de Brecht, M., Pauly, A.: Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic 163(8), 968–1008 (2012)

    Article  Google Scholar 

  5. Brattka, V., Gherardi, G.: Effective choice and boundedness principles in computable analysis. Bulletin of Symbolic Logic 1, 73–117 (2011), arXiv:0905.4685

    Google Scholar 

  6. Brattka, V., Gherardi, G.: Weihrauch degrees, omniscience principles and weak computability. Journal of Symbolic Logic 76, 143–176 (2011), arXiv:0905.4679

    Google Scholar 

  7. Escardó, M.: Synthetic topology of datatypes and classical spaces. Electronic Notes in Theoretical Computer Science 87 (2004)

    Google Scholar 

  8. Férée, H., Gomaa, W., Hoyrup, M.: Analytical properties of resource-bounded real functionals. Journal of Complexity (to appear)

    Google Scholar 

  9. Férée, H., Hoyrup, M.: Higher-order complexity in analysis. In: CCA 2013 (2013)

    Google Scholar 

  10. Hennie, F.C., Stearns, R.E.: Two-tape simulation of multitape turing machines. J. ACM 13(4), 533–546 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  11. Higuchi, K., Pauly, A.: The degree-structure of Weihrauch-reducibility. Logical Methods in Computer Science 9(2) (2013)

    Google Scholar 

  12. Kapron, B.M., Cook, S.A.: A new characterization of type-2 feasibility. SIAM Journal on Computing 25(1), 117–132 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space complete. Computational Complexity 19(2), 305–332 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kawamura, A.: On function spaces and polynomial-time computability. Dagstuhl Seminar 11411 (2011)

    Google Scholar 

  15. Kawamura, A., Cook, S.: Complexity theory for operators in analysis. ACM Transactions on Computation Theory 4(2), Article 5 (2012)

    Google Scholar 

  16. Kawamura, A., Müller, N., Rösnick, C., Ziegler, M.: Parameterized Uniform Complexity in Numerics: from Smooth to Analytic, from NP-hard to Polytime. arXiv 1211.4974 (2012)

    Google Scholar 

  17. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth differential equations. Logical Methods in Computer Science 10(1), Paper 6 (2014)

    Google Scholar 

  18. Kawamura, A., Pauly, A.: Function spaces for second-order polynomial time. arXiv 1401.2861 (2014)

    Google Scholar 

  19. Ko, K.I.: Polynomial-time computability in analysis. Birkhäuser (1991)

    Google Scholar 

  20. Kreitz, C., Weihrauch, K.: Theory of representations. Theoretical Computer Science 38, 35–53 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  21. Pauly, A.: Many-one reductions between search problems. arXiv 1102.3151 (2011), http://arxiv.org/abs/1102.3151

  22. Pauly, A.: Multi-valued functions in computability theory. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 571–580. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Pauly, A.: A new introduction to the theory of represented spaces (2012), http://arxiv.org/abs/1204.3763

  24. Pauly, A., de Brecht, M.: Towards synthetic descriptive set theory: An instantiation with represented spaces. arXiv 1307.1850

    Google Scholar 

  25. Pauly, A., Ziegler, M.: Relative computability and uniform continuity of relations. Journal of Logic and Analysis 5 (2013)

    Google Scholar 

  26. Rösnick, C.: Closed sets and operators thereon. In: CCA 2013 (2013)

    Google Scholar 

  27. Schröder, M.: Admissible Representations for Continuous Computations. Ph.D. thesis, FernUniversität Hagen (2002)

    Google Scholar 

  28. Schröder, M.: Extended admissibility. Theoretical Computer Science 284(2), 519–538 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  29. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the LMS 2(42), 230–265 (1936)

    MathSciNet  Google Scholar 

  30. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem: Corrections. Proceedings of the LMS 2(43), 544–546 (1937)

    MathSciNet  Google Scholar 

  31. Weihrauch, K.: Type 2 recursion theory. Theoretical Computer Science 38, 17–33 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weihrauch, K.: Computable Analysis. Springer (2000)

    Google Scholar 

  33. Weihrauch, K.: Computational complexity on computable metric spaces. Mathematical Logic Quarterly 49(1), 3–21 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Kawamura, A., Pauly, A. (2014). Function Spaces for Second-Order Polynomial Time. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics