Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 290))

Abstract

When agents are modelled with psychologically realistic decision making rules, the assumptions made about their decisions and behaviour are usually more complex than those made in traditional economics. This has made it harder for behavioural and cognitive economists to derive mathematical results analogous to those of the Arrow-Debreu theorem and similar economic findings. It has also made it difficult to generalise behavioural economic results – for example Fudenberg [Fud06] criticises the approach of modifying individual assumptions instead of considering them as a group.

As a result of this additional complexity, many modellers in behavioural economics are turning to agent-based computational methods instead of attempting to find analytic, closed-form solutions to economic problems (e.g. [Boq11], [Tes02]).

Computational methods have many advantages over traditional analytic methods, but also some disadvantages (for example, they make it harder to make very general findings, or to place an economic interpretation on some results).

This paper proposes a new method of modelling agent decision making and behaviour, based on information processing rather than utility and preferences. Models can be built whose agents follow such rules; these produce different micro and macroeconomic predictions to conventional economic models. By shifting the basis of the model to information and how it is transformed by agents, it becomes possible to develop new kinds of economic models which can be understood analytically, not just by computer simulation.

The agents in the model have goals which stochastically become salient at different times ([DTM08]). They learn and use strategies to achieve those goals, such as adaptive heuristics ([HMC03]) and fast-and-frugal rules ([GG02]). They process information using the approach of Payne, Bettman and Johnson 1993, and make choices based on heuristics such as attribute substitution (for example [KF02]).

This approach can complement computational methods and provides some of the generality and elegance which is often thought to be missing from behavioural approaches. It can also replicate some of the standard economic results as well as being compatible with a number of empirically discovered ”anomalies” from the judgement and decision-making (JDM) and behavioural economics literatures. It may also offer a way to consider aspects of certain phenomena at the cognitive level which are outside of the scope of traditional choice-based economics, but which are clearly important to real individuals and have real-world consequences: motivation, happiness, deliberate ignorance, and the learning of new preferences.

The paper is currently a work in progress and represents one step towards a possible closed-form macroeconomic model based on cognitive and behavioural microfoundations.

Thanks to David Laibson, Liam Delaney and others for encouragement and discussions on this topic; to Elina Halonen for debate and development of the ideas, and suggestions of useful sources. Especial thanks to four anonymous reviewers for useful suggestions and comments on an earlier version of this manuscript, which helped to move it forward to the current version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckage, B., Kauffman, S., Zia, A., Koliba, C., Gross, L.J.: More complex complexity: Exploring the nature of computational irreducibility across physical, biological and human social systems. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC, vol. 2, pp. 79–88. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Boqvist, S.: A neurocomputational perspective on behavioural economics: a study of emotional processes. Master’s thesis, KTH Royal Institute of Technology, Stockholm (2011)

    Google Scholar 

  3. Camerer, C.F.: Behavioural Game Theory: Experiments in Strategic Interaction. Princeton University Press (2011)

    Google Scholar 

  4. Dastani, M.M., Tinnemeier, N.A.M., Meyer, J.-J.C.: A programming language for normative multi-agent systems. In: Dignum, V. (ed.) Multi-Agent Systems: Semantics and Dynamics of Organizational Models. IGI Global (2008)

    Google Scholar 

  5. Fudenberg, D.: Advancing beyond advances in behavioural economics. Journal of Economic Literature 44(3), 694–711 (2006)

    Article  Google Scholar 

  6. Gabaix, X.: A sparsity-based model of bounded rationality. NBER Working Papers (16911) (2011)

    Google Scholar 

  7. Goldstein, D., Gigerenzer, G.: Models of ecological rationality. Psych. Review 109(1), 75–90 (2002)

    Article  Google Scholar 

  8. Hart, S., Mas-Colell, A.: Regret-based continuous-time dynamics. Games and Economic Behavior 45(2), 375–394 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kahneman, D., Frederick, S.: Representativeness revisited: Attribtue substitution in intuitive judgment. In: Gilovich, T., Griffin, D., Kahneman, D. (eds.) Heuristics and Biases: The Psychology of Intuitive Judgment. Cambridge University Press (2002)

    Google Scholar 

  10. Ruivo, E.L.P., de Oliveira, P.P.B.: A spectral portrait of the elementary cellular automata rule space. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC, vol. 2, pp. 211–235. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Rucker, R.: An incompleteness theorem for the natural world. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC, vol. 2, pp. 185–198. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press (1949)

    Google Scholar 

  13. Tesfatsion, L.S.: Agent-based computational economics: Growing economies from the bottom up. Staff General Research Papers (5075) (2002)

    Google Scholar 

  14. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proceedings of the London Mathematical Society 42(2), 230–265 (1937)

    Article  MathSciNet  Google Scholar 

  15. Velupillai, K.V.: The relevance of computation irreducibility as computation universality in economics. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC, vol. 2, pp. 101–111. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Zwirn, H., Delahaye, J.-P.: Unpredictability and computational irreducibility. In: Zenil, H. (ed.) Irreducibility and Computational Equivalence. ECC, vol. 2, pp. 273–295. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Caldwell, L. (2014). When Can Cognitive Agents Be Modeled Analytically versus Computationally?. In: Omatu, S., Bersini, H., Corchado, J., Rodríguez, S., Pawlewski, P., Bucciarelli, E. (eds) Distributed Computing and Artificial Intelligence, 11th International Conference. Advances in Intelligent Systems and Computing, vol 290. Springer, Cham. https://doi.org/10.1007/978-3-319-07593-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07593-8_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07592-1

  • Online ISBN: 978-3-319-07593-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics