Skip to main content

Abstract

Bloat is one of the most interesting theoretical problems in genetic programming (GP), and one of the most important pragmatic limitations in the development of real-world GP solutions. Over the years, many theories regarding the causes of bloat have been proposed and a variety of bloat control methods have been developed. It seems that one of the underlying causes of bloat is the search for fitness; as the fitness-causes-bloat theory states, selective bias towards fitness seems to unavoidably lead the search towards programs with a large size. Intuitively, however, abandoning fitness does not appear to be an option. This paper, studies a GP system that does not require an explicit fitness function, instead it relies on behavior-based search, where programs are described by the behavior they exhibit and selective pressure is biased towards unique behaviors using the novelty search algorithm. Initial results are encouraging, the average program size of the evolving population does not increase with novelty search; i.e., bloat is avoided by focusing on novelty instead of quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle, L., Johnson, C.: Semantically driven crossover in genetic programming. In: Proceedings of the Tenth Conference on Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) CEC 2008, pp. 111–116. IEEE Press (2008)

    Google Scholar 

  2. Beadle, L., John’son, C.G.: Semantically driven mutation in genetic programming. In: Proceedings of the Eleventh Conference on Congress on Evolutionary Computation, CEC 2009, pp. 1336–1342. IEEE Press (2009)

    Google Scholar 

  3. Brooks, R.A.: Cambrian intelligence: the early history of the new AI. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  4. Dawkins, R.: Climbing Mount Improbable. W.W. Norton & Company (1996)

    Google Scholar 

  5. Dignum, S., Poli, R.: Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 1588–1595. ACM, New York (2007)

    Chapter  Google Scholar 

  6. García-Valdez, M., Trujillo, L., de Vega, F.F., Merelo Guervós, J.J., Olague, G.: EvoSpace-interactive: A framework to develop distributed collaborative-interactive evolutionary algorithms for artistic design. In: Machado, P., McDermott, J., Carballal, A. (eds.) EvoMUSART 2013. LNCS, vol. 7834, pp. 121–132. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Harper, R.: Spatial co-evolution: quicker, fitter and less bloated. In: Proceedings of the Fourteenth International Conference on Genetic and Evolutionary Computation Conference, GECCO 2012, pp. 759–766. ACM, New York (2012)

    Chapter  Google Scholar 

  8. Kistemaker, S., Whiteson, S.: Critical factors in the performance of novelty search. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 965–972. ACM (2011)

    Google Scholar 

  9. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary computation. IEEE Transactions on Evolutionary Computation 16(4), 523–536 (2012)

    Article  Google Scholar 

  10. Koza, J.: Human-competitive results produced by genetic programming. Genetic Programming and Evolvable Machines 11(3), 251–284 (2010)

    Article  Google Scholar 

  11. Koza, J.R.: Genetic programming: on the programming of computers by means of natural selection. MIT Press, Cambridge (1992)

    MATH  Google Scholar 

  12. Krawiec, K., Pawlak, T.: Locally geometric semantic crossover: a study on the roles of semantics and homology in recombination operators. Genetic Programming and Evolvable Machines 14(1), 31–63 (2013)

    Article  Google Scholar 

  13. Langdon, W.B., Poli, R.: Fitness causes bloat. In: Proceedings of the Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing, pp. 13–22. Springer (1997)

    Google Scholar 

  14. Langdon, W.B., Poli, R.: Fitness causes bloat: Mutation. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 37–48. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: Proceedings of the Eleventh International Conference on Artificial Life, ALIFE XI. MIT Press, Cambridge (2008)

    Google Scholar 

  16. Lehman, J., Stanley, K.O.: Efficiently evolving programs through the search for novelty. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 837–844. ACM (2010)

    Google Scholar 

  17. Lehman, J., Stanley, K.O.: Abandoning objectives: Evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)

    Article  Google Scholar 

  18. Lehman, J., Stanley, K.O.: Evolving a diversity of virtual creatures through novelty search and local competition. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 211–218. ACM (2011)

    Google Scholar 

  19. Mahfoud, S.W.: Niching methods for genetic algorithms. PhD thesis, Champaign, IL, USA, UMI Order No. GAX95-43663 (1995)

    Google Scholar 

  20. McPhee, N.F., Ohs, B., Hutchison, T.: Semantic building blocks in genetic programming. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 134–145. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 21–31. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  22. Mouret, J.B., Doncieux, S.: Encouraging behavioral diversity in evolutionary robotics: An empirical study. Evol. Comput. 20(1), 91–133 (2012)

    Article  Google Scholar 

  23. Naredo, E., Trujillo: Searching for novel clustering programs. To appear in Proceeding from the Genetic and Evolutionary Computation Conference, GECCO 2013. ACM (2013)

    Google Scholar 

  24. Naredo, E., Trujillo, L., Martínez, Y.: Searching for novel classifiers. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 145–156. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Nelson, A.L., Barlow, G.J., Doitsidis, L.: Fitness functions in evolutionary robotics: A survey and analysis. Robot. Auton. Syst. 57(4), 345–370 (2009)

    Article  Google Scholar 

  26. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Technology. MIT Press, Cambridge (2000)

    Google Scholar 

  27. Ofria, C., Wilke, C.O.: Avida: a software platform for research in computational evolutionary biology. Artif. Life 10(2), 191–229 (2004)

    Article  Google Scholar 

  28. Poli, R., Langdon, W.B., Dignum, S.: On the limiting distribution of program sizes in tree-based genetic programming. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 193–204. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  29. Silva, S.: Reassembling operator equalisation: a secret revealed. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1395–1402. ACM, New York (2011)

    Google Scholar 

  30. Silva, S., Almeida, J.: Gplab–a genetic programming toolbox for matlab. In: Gregersen, L. (ed.) Proceedings of the Nordic MATLAB Conference, pp. 273–278 (2003)

    Google Scholar 

  31. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review of past and current bloat theories. Genetic Programming and Evolvable Machines 10(2), 141–179 (2009)

    Article  MathSciNet  Google Scholar 

  32. Silva, S., Dignum, S., Vanneschi, L.: Operator equalisation for bloat free genetic programming and a survey of bloat control methods. Genetic Programming and Evolvable Machines 13(2), 197–238 (2012)

    Article  Google Scholar 

  33. Trujillo, L., Martínez, Y., Galván-López, E., Legrand, P.: Predicting problem difficulty for genetic programming applied to data classification. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO 2011, pp. 1355–1362. ACM, New York (2011)

    Google Scholar 

  34. Trujillo, L., Olague, G., Lutton, E., de Vega, F.F.: Discovering several robot behaviors through speciation. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., McCormack, J., O’Neill, M., Romero, J., Rothlauf, F., Squillero, G., Uyar, A.Ş., Yang, S. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 164–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  35. Trujillo, L., Olague, G., Lutton, E., de Vega, F.F., Dozal, L., Clemente, E.: Speciation in behavioral space for evolutionary robotics. Journal of Intelligent & Robotic Systems 64(3-4), 323–351 (2011)

    Article  Google Scholar 

  36. Uy, N.Q., Hoai, N.X., O’Neill, M., Mckay, R.I., Galván-López, E.: Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genetic Programming and Evolvable Machines 12(2), 91–119 (2011)

    Article  Google Scholar 

  37. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complexity in genetic programming. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 877–884. ACM, New York (2010)

    Chapter  Google Scholar 

  38. Zhang, M., Smart, W.: Using gaussian distribution to construct fitness functions in genetic programming for multiclass object classification. Pattern Recogn. Lett. 27(11), 1266–1274 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Trujillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Trujillo, L., Naredo, E., Martínez, Y. (2013). Preliminary Study of Bloat in Genetic Programming with Behavior-Based Search. In: Emmerich, M., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV. Advances in Intelligent Systems and Computing, vol 227. Springer, Heidelberg. https://doi.org/10.1007/978-3-319-01128-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01128-8_19

  • Publisher Name: Springer, Heidelberg

  • Print ISBN: 978-3-319-01127-1

  • Online ISBN: 978-3-319-01128-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics