Skip to main content

Potential of arbuscular mycorrhizal fungi for bioremediation

  • Chapter

Abstract

Bioremediation is the use of organisms for the treatment of soil pollution. Root colonizing symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF) are mainly involved in phytoremediation, that uses plants for soil reme­diation. Phytoremediation comprises a set of technologies that use various plants as a containment, destruction or extraction technique (EPA 2000). These techniques have received considerable interest in recent years because of potential cost savings compared to conventional non biological techniques. Different strategies of phytoremediation can be applied depending on the kind of pollutants. In all cases, vegetation reduces infiltration of water and erosion. Heavy metals cannot be degraded and can only be extracted (phytoextraction) from the soil or immobilized in a non toxic form (phytostabilization). AMF can help alleviate metal toxicity to plants by reducing metal translocation from root to shoot (Leyval et al. 1997). Therefore they may contribute to plant estab­lishment and survival in heavy metal polluted sites and could be used as a com­plement to immobilization strategies. Phytoextraction mainly uses plants accu­mulating high concentrations of heavy metals, which can be harvested, dis­carded and even extracted to recover metals. For this purpose plants with var­ious capacities for metal accumulation are used, like members of the Brassicaceae which are generally considered non mycorrhizal, but also other accumulators producing higher biomass, which can be mycotrophic. Organic pollutants such as polycylic aromatic hydrocarbons (PAH) can be transformed or degraded through microbial activity, which is commonly enhanced in the root zone (rhizodegradation). It is not known whether this enhanced degrada­tion in the rhizosphere is due to plant exudates including enzymes, surfactants, and other physical/chemical effects, and/or to increased microbial activity. Another possible mechanism for degradation of organic pollutants could be directly dependent on plant metabolism. However, this is not a quantitatively important route for PAH (Binet et al. 2000a), and will not be discussed here. AMF may be beneficial for PAH rhizodegradation because they affect root exudation and root associated microbial populations and because, in some ways, they act as an extension of the roots outside the rhizosphere. They may potentially also have a direct effect on PAH degradation. Finally, AMF can be used in bioassays of soil quality or soil toxicity, due to their sensitivity towards a range of soil pollutants. In this way, they could be used to show that adequate soil quality has been re-established after remediation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barea J M, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In A.C., Gange and V.K., Brown (ed.), Multitrophic interactions in terestrial systems, pp 65–77

    Google Scholar 

  • Berreck M, Haselwandter K (2001) Effect of the arbuscular mycorrhizal symbiosis upon uptake of cesium and other cations by plants. Mycorrhiza 10:275–280

    Article  CAS  Google Scholar 

  • Binet P, Portal J M, Leyval C (2000a) Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizos­phere and mycorrhizosphere of ryegrass. Plant Soil 227:207–213

    Article  CAS  Google Scholar 

  • Binet P, Portal J M, Leyval C (2000b) Dissipation of 3–6-ring polycyclic aromatic hydrocarbons in the rhizosphere of ryegrass. Soil Biol Biochem 32:2011–2017

    Article  CAS  Google Scholar 

  • Birch, L D, Bachofen R (1990) Effects of microorganisms on the environmental mobility of radionu­cleides. In J.M. Bollang and G. Stozky (ed.), Soil Biochemistry, vol. 6. Marcel Dekker, New York, p.483–527

    Google Scholar 

  • Bolan N S, Robson A D, Barrow N J (1987) Effects of phosphorus application and mycorrhizal inoc­ulation on root characteristics of subterranean clover and ryegrass in relation to phosphorus uptake. Plant Soil 104:294–298

    Article  CAS  Google Scholar 

  • Brundrett M C, Ashwath N, Jasper D A (1996) Mycorrhizas in the Kakadu region of tropical Australia. I. Propaguels of mycorrhizal fungi and soil properties in natural habitats. Plant Soil 184:159–171

    Article  CAS  Google Scholar 

  • Criquet S, Joner E J, Léglize P, Leyval C (2000) Effects of anthracene and mycorrhiza on the activity of oxidoreductases in the roots and the rhizosphere of lucerne(Medicago sativa L.). Biotechnol Lett 22:1733–1737

    Article  CAS  Google Scholar 

  • Cunningham S D, Anderson T, Schwab A P and Hsu F C (1996) Phytoremediation of soils contami­nated with organic pollutants. Adv Agron 56:55–114

    Article  CAS  Google Scholar 

  • Cutright T J and Lee S (1994) Microorganisms and metabolic pathways for remediation of PAH in contaminated soil. Fresenius Environ Bull 3:413–421

    CAS  Google Scholar 

  • del Val C, Barea J M, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723

    PubMed  CAS  Google Scholar 

  • Diaz G, Azcon-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241­-249

    Article  Google Scholar 

  • Dighton J, Clint G M, Poskitt J M (1991) Uptake and accumulation of 137Cs by upland grassland soil fungi: a potential pool of Cs immobilization. Mycol Res 95:1052–1056

    Article  CAS  Google Scholar 

  • Ebbs S, Kochian L V (1998) Phytoextraction of zinc by oat (Avena sativa) barley (Hordeum vulgare) and indian mustard (Brassica juncea). Environ Sci Technol 32:802–806

    Article  CAS  Google Scholar 

  • Ebbs S, Kochian L, Lasat M, Pence N, Jiang T (2000) An integrated investigation of the phytoreme­diation of heavy metal and radionuclide contaminated soils: From the laboratory to the field. In: Wise D L, Trantolo D J, Cichon E J, Inyang H I, Stottmeister U (eds) Bioremediation of contam­inated soils. Dekker, New York, pp 745–769

    Google Scholar 

  • El-Kherbawy M, Angle J S, Heggo A, Chaney R L (1989) Soil pH, rhizobia,and vesicular-arbuscular mycorrhizae inoculation effects on growth and heavy metal uptake of alfalfa (Medicago sativa L.). Biol Fertil Soil 8:61–65

    Article  CAS  Google Scholar 

  • EPA (2000) Introduction to phytoremediation, Cincinatti, Ohio p 70.

    Google Scholar 

  • Ernst W H O (2000) Evolution of metal hyperaccumulation and phytoremediation hype. New Phytol 146:357–358

    Article  Google Scholar 

  • George E, Römheld V, Marschner H (1994) Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey J A, Crowley D E, Luster D G (eds) Biochemistry of metal micronutrients in the rhizosphere. CRC Press, Boca Raton pp 93–109

    Google Scholar 

  • Germida J J, Siciliano S D, de Freitas J R, Seib A M (1998) Diversity of root-associated bacteria asso­ciated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microb Ecol 26: 43–50

    Article  CAS  Google Scholar 

  • Gildon A, Tinker P B (1983) Interactions of vesicular arbuscular mycorrhizal infection and heavy met­als in plants. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol 95: 247–261

    Article  CAS  Google Scholar 

  • Graham J H, Leonard R T, Menge J A (1981) Membrane-mediated decrease in root exudation respon­sible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:549–552

    Article  Google Scholar 

  • Griffiths B S, Ritz K, Ebblewhite N, Dobson G (1999) Soil microbial community structure: Effects of substrate loading rates. Soil Biol Biochem 31:145–153

    Article  CAS  Google Scholar 

  • Haselwandter K, Berreck M (1994) Accumulation of radionuclides in fungi. In: Winkelmann G, Winge D R (eds) Metal ions in fungi. Dekker, New York pp 259–277

    Google Scholar 

  • Haselwandter K, Leyval C, Sanders F E (1994) Impact of arbuscular mycorrhizal fungi on plant uptake of heavy metals and radionuclides from soil. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agricultural and natural ecosystems. Birkhäuser, Basel pp 179–189

    Chapter  Google Scholar 

  • Hetrick BAD, Wilson G W T, Figge D A H (1994) The Influence of mycorrhizal symbiosis and fer­tilizer amendments on establishment of vegetation in heavy metal mine spoil. Environ Poll 86:171–179

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycor­rhizal fungi. J Plant Physiol 154:709–717

    Article  CAS  Google Scholar 

  • Huang J, Cunningham S (1996) Lead phytoextraction: species variation in lead uptake and transloca­tion. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Jacquot E, vanTuinen D, Gianinazzi S, Gianinazzi V (1999) Monitoring species of arbuscular mycor­rhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188

    Article  Google Scholar 

  • Jasper D A, Abott L K, Robson A D (1991) The effect of soil disturbance on vesicular arbuscular myc­orrhizal fungi in soils from different vegetations types. New Phytol 118:471–476

    Article  Google Scholar 

  • Joner E J, Johansen A, de la Cruz MAT, Szolar OJM, Loibner A, Portal JM, Leyval C Rhizosphere effects on microbial community structure, and dissipation and toxicity of PAH in spiked soil. Environ Sci Technol, submitted

    Google Scholar 

  • Joner E J, Briones R, Leyval C (2000) Metal binding capacity of arbuscular mycorrhizal fungi. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Joner E J, Leyval C (2001a) Arbuscular mycorrhizal influence on clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons. Mycorrhiza 10:155–159

    Article  CAS  Google Scholar 

  • Joner E J, Leyval C (2001b) Time-course of heavy metal uptake in maize and clover as affected by different mycorrhiza inoculation regimes. Biol Fertil Soil, in press

    Google Scholar 

  • Joner E J, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium sub­terraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Kaldorf M, Kuhn A J, Schröder W H, Hildebrandt U and Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    Article  CAS  Google Scholar 

  • Konoplev A V, Vitkorova N V, Virchenko E P, Popov V E, Bulgakov A A, Desmet G M (1993) Influence of agricultural countermeasures on the ratio of different chemical forms of radionuclides in soil and soil solution. Sci Total Environ 137:147–162

    Article  CAS  Google Scholar 

  • Koomen I, McGrath S P, Giller K (1990) Mycorrhizal infection of clover is delayed in soils contaminated with heavy metals from past sewage sludge applications. Soil Biol Biochem 22:871–873

    Article  CAS  Google Scholar 

  • Laheurte F, Leyval C and Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116

    Google Scholar 

  • Leyval C, Binet P (1998) Effect of polyaromatic hydrocarbons (PAHs) on arbuscular mycorrhizal col­onization of plants. J Environ Qual 27:402–407

    Article  CAS  Google Scholar 

  • Leyval C, Singh B R, Joner E J (1995) Occurrence and infectivity of arbuscular-mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Poll 84:203-­216

    Article  CAS  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Interactions between heavy metals and mycorrhizal fungi in polluted soils: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Leyval C, Weissenhorn I (1995) Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil 175:233–238

    Article  Google Scholar 

  • Linderman R G (1988) Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizos­phere effect. Phytopathology 78:366–371

    Google Scholar 

  • Linderman R G (1991) Mycorrhizal interactions in the rhizosphere. In: Keister D L, Cregan P B (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht pp 343–348

    Chapter  Google Scholar 

  • Loth C. (1996) Abundance of arbuscular mycorrhizal fungi spores at different natives sites in dependence of sludge applications. Bodenkultur 47:89–96

    Google Scholar 

  • McGonigle T P, Miller M H (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soil. Soil Biol Biochem 28:263–269

    Article  CAS  Google Scholar 

  • McGraw A C, Gamble J F, Schenk N C (1979) Vesicular-arbuscular mycorrhizal uptake of cesium-134 in two tropical pasture grass species. Phytopathology 69:1038

    Google Scholar 

  • Olsson P A, Bádth E, Jakobsen I and Söderström B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28:463–470

    Article  CAS  Google Scholar 

  • Pawlowska T E, Chaney R L, Chin M, Charvat I (2000) Effects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill. Appl Environ Microbiol 66:2526–2530

    Article  PubMed  CAS  Google Scholar 

  • Perry J J (1979) Microbial cooxidation involving hydrocarbons. Microbiol Rev 43:59–72

    PubMed  CAS  Google Scholar 

  • Ravnskov S, Nybroe 0 and Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol. 142:113–122

    Article  Google Scholar 

  • Reddell P, Milnes A R (1992) Mycorrhizas and other specialised nutrient-acquisition strategies - Their occurrence in woodland plants from Kakadu and their role in rehabilitation of waste rock dumps at a local uranium mine. Aust J Bot 40:223–242

    Article  CAS  Google Scholar 

  • Rogers R D, Williams S E (1986) Vesicular-arbuscular mycorrhiza: Influence on plant uptake of cesium and cobalt. Soil Biol Biochem 18:371–376

    Article  CAS  Google Scholar 

  • Salt D E, Blaylock M, Kumar N P B A, Dushenkov V, Ensley B D, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salzer P, Corbiere H and Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Schreiner R P, Bethlenfalvay G J (1995) Mycorrhizal interactions in sustainable agriculture. Crit Rev Biotechnol 15:271–285

    Article  Google Scholar 

  • Schwab A P, Banks M K (1994) Biologically mediated dissipation of polyaromatic hydrocarbons in the root zone. In: Anderson T A, Coats J R (eds) Bioremediation through rhizosphere technology. ACS Symposium Series 563. American Chemical Society, Washington pp 132–141

    Chapter  Google Scholar 

  • Segal M G (1993) Agricultural countermeasures following the deposition of radioactivity after a nuclear accident. Sci Total Environ 137:31–48

    Article  CAS  Google Scholar 

  • Shetty K G, Hetrick B A D, Figge D A H, Schwab A P (1994) Effects of mycorrhiza and other soil microbes on revegetation of heavy metal contaminated mine spoil. Environ Poll 86:181–188

    Article  CAS  Google Scholar 

  • Smith S E, Read D J (1997) Mycorrhizal symbiosis. Academic Press, San Diego

    Book  Google Scholar 

  • Thompson J P (1994) Inoculation with vesicular-arbuscular mycorrhizal fungi from cropped soil over­comes long-fallow disorder of linseed (Linum usitatissimum L.) by improving P and Zn uptake. Soil Biol Biochem 26:1133–1143

    Article  CAS  Google Scholar 

  • Tonin C., Vandenkoornhuyse P, Joner E, Straczek J, Leyval C (2001) Diversity of AM fungi in the rhi­zosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Element localisation in mycorrhizal roots of Pteridium aquilinium (L.) Kuhn collected from experimental plots treated with cadmiun dust. New Phytol 123:465–472

    Article  Google Scholar 

  • van Tichelen K K, Colpaert J V, Van Assche J A (1996) Development of arbuscular mycorrhizas in a heavy metal contaminated soil amended with a metal inmobilizing substance. In: Azcón-Aguilar C, Barea J M (eds) Mycorrhizae in integrated systems. from genes to plant development. European Comission, Luxemburg pp 479–482.

    Google Scholar 

  • Vandenkoornhuyse P (1998) Effet des métaux sur la diversité des champignons mycorhiziens à arbus­cules dans les sols, Ph-D Thesis, Henri Poincaré University, Nancy I

    Google Scholar 

  • Wan M T, Rahe J E, Watts R G (1998) A new technique for determining the sublethal toxicity of pes­ticides to the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. Environ Toxicol Chem 17:1421–1428

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1995) Bioavailability of heavy metals and abundance of arbus­cular mycorrhica in a soil polluted by atmospheric deposition from a smelter. Biol Fertil Soil 19:22–28

    Article  CAS  Google Scholar 

  • Weissenhorn I, Leyval C (1996) Spore germination of arbuscular-mycorrhizal (AM) fungi in soils differing in heavy metal content and other physicochemical properties. Eur J Soil Biol 32:165–172

    CAS  Google Scholar 

  • White P J, Broadley M R (2000) Mechanisms of cesium uptake by plants. New Phytol 147:241–256

    Article  CAS  Google Scholar 

  • WHO (1983) Part I: Chemical, environmental and experimental data. In: Evaluation of the carcinogenic risk of chemicals to humans - polycyclic aromatic hydrocarbons. Volume 32. International Agency for Research on Cancer, Lyon, France

    Google Scholar 

  • Wilson S C and Jones K C (1993) Bioremediation of soils contaminated with polynuclear aromatic hydrocarbons (PAHs): A review. Environ Pollut 88:229–249

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Leyval, C., Joner, E.J., del Val, C., Haselwandter, K. (2002). Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (eds) Mycorrhizal Technology in Agriculture. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8117-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8117-3_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9444-9

  • Online ISBN: 978-3-0348-8117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics