Skip to main content

Chemical Changes during Extrusion Cooking

Recent Advances

  • Chapter
Process-Induced Chemical Changes in Food

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 434))

Abstract

Cooking extruders process a variety of foods, feeds, and industrial materials. Greater flexibility in product development with extruders depends upon understanding chemical reactions that occur within the extruder barrel and at the die. Starch gelatinization and protein denautration are the most important reactions during extrusion. Proteins, starches, and non-starch polysaccharides can fragment, creating reactive molecules that may form new linkages not found in nature. Vitamin stability varies with vitamin structure, extrusion conditions, and food matrix composition. Little is known about the effects of extrusion parameters on phytochemical bioavailability and stability. Reactive extrusion to create new flavor, antioxidant and color compounds will be an area of interest in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al-Ruqaie, I.; Lorenz, K. Alkylresorcinols in extruded cereal brans. Cereal Chem. 1992, 69, 412–415.

    Google Scholar 

  • Andersson, Y.; Hedlund, B. Extruded wheat flour: correlation between processing and product quality parameters. Food Qual. Prefer. 1990, 2, 201–216.

    Article  Google Scholar 

  • Arêas, J.A.G. Extrusion of food proteins. Crit. Rev. Food Sci. Nutr. 1992, 32, 365–392.

    Article  PubMed  Google Scholar 

  • Arora, A.; Camire, M.E. Performance of potato peels in muffins and cookies. Food Res. Intl. 1994, 27, 14–22.

    Article  Google Scholar 

  • Artz, W.E.; Warren, C.C.; Villota, R. Twin screw extrusion modification of corn fiber. J. Food Sci. 1990, 55, 746–750, 754.

    Article  Google Scholar 

  • Barraquio, V.L; van de Voort, F.R. Sodium caseinate from skim milk powder by extrusion processing: physico-chemical and functional properties. J. Food Sci. 1991, 56, 1552–1556, 1561.

    Article  CAS  Google Scholar 

  • Bates, L.; Ames, J.M.; MacDougall, D.B. The use of a reaction cell to model the development and control of colour in extrusion cooked foods. Lebensm.-Wiss. u. Technol. 1994, 27, 375–379.

    Article  Google Scholar 

  • Bhatnagar, S; Hanna, M.A. Amylose-lipid complex formation during single-screw extrusion of various corn starches. Cereal Chem. 1994a, 71, 582–587.

    CAS  Google Scholar 

  • Bhatnagar, S; Hanna, M.A. Extrusion processing conditions for amylose-lipid complexing. Cereal Chem. 1994b, 71, 587–593.

    CAS  Google Scholar 

  • Björck, I; Asp, N.-G. The effects of extrusion cooking on nutritional value — a literature review. J. Food Eng. 1983, 2, 281–308.

    Article  Google Scholar 

  • Camire, M.E. Protein functionality modification by extrusion cooking. J. Am. Oil Chem. Soc. 1991, 68, 200–205.

    Article  CAS  Google Scholar 

  • Camire, M.E; Camire, A.L. Enzymatic starch hydrolysis of extruded potato peels. Starch/Stärke 1994, 46, 308–311.

    Article  CAS  Google Scholar 

  • Camire, M.E; Flint, S.I.. Thermal processing effects on dietary fiber composition and hydration capacity in corn meal, oat meal, and potato peels. Cereal Chem. 1991, 68, 645–647.

    Google Scholar 

  • Camire, M.E.; Camire, A.L.; Krumhar, K. Chemical and nutritional changes. Grit. Rev. Food Sci. Nutr. 1990, 29, 35–57.

    Article  CAS  Google Scholar 

  • Camire, M.E.; Zhao, J.; Violette, D.A. In vitro binding of bile acids by extruded potato peels. J. Agric. Food Chem. 1994, 41, 2391–2394.

    Article  Google Scholar 

  • Camire, M.E.; Bushway, R.J.; Zhao, J.; Perkins, B; Paradis, L.R. Fate of thiabendazole and chlorpropham residues in extruded potato peels. J. Agric. Food Chem. 1995a, 43, 495–497.

    Article  CAS  Google Scholar 

  • Camire, M.E.; Zhao, J.; Dougherty, M.P.; Bushway, R.J. In vitro binding of benzo[a]pyrene by extruded potato peels. J. Agric. Food Chem. 1995b, 43, 970–973.

    Article  CAS  Google Scholar 

  • Camire, M.E.; Zhao, J.; Dougherty, M.P.; Bushway, R.J. In vitro binding of benzo[a]pyrene by ready-to-eat breakfast cereals. Cereal Foods World 1995c, 40, 447–450.

    CAS  Google Scholar 

  • Cheftel, J.C. Nutritional effects of extrusion cooking. Food Chem. 1986, 20, 263–283.

    Article  CAS  Google Scholar 

  • Cheftel, J.C; Kitagawa, M.; Queguiner, C. New protein texturization processes by extrusion cooking at high moisture levels. Food Rev. Intl. 1992, 8, 235–275.

    Article  CAS  Google Scholar 

  • Chinnaswamy, R. Basis of cereal starch expansion. Carbohydrate Polymers 1993, 21, 157–167.

    Article  CAS  Google Scholar 

  • Chinnaswamy, R; Hanna, M.A.Physicochemical and macromolecular properties of starch-cellulose fiber extradates. Food Structure 1991, 10, 229–239.

    CAS  Google Scholar 

  • Chiu, C.-W.; Henley, M.; Altieri, P. Process for making amylase resistant starch from high amylose starch. U.S. Patent 5, 281,276, Jan. 25, 1994.

    Google Scholar 

  • Dahl, S.R; Villota, R. Twin-screw extrusion texturization of acid and alkali denatured soy proteins. J. Food Sci. 1991, 56, 1002–1007.

    Article  CAS  Google Scholar 

  • Darroch, C.S.; Bell, J.M.; Keith, M.O. The effects of moist heat and ammonia on the chemical composition and feeding value of extruded canola screenings for mice. Can J. Anim. Sci. 1990, 70, 267–277.

    Article  CAS  Google Scholar 

  • de la Gueriviere, J.F.; Mercier, C; Baudet, L. Incidences de la cuisson-extrusion sur certains parametres nutrition-nels de produits alimentaires notamment céréaliers. Cah. Nutr. Diet. 1985, 20, 201–210.

    Google Scholar 

  • Delia Valle, G.; Quillien, L.; Gueguen, J. Relationships between processing conditions and starch and protein modifications during extrusion-cooking of pea flour. J. Sci. Food Agric. 1994, 64, 509–517.

    Article  Google Scholar 

  • Fairweather-Tait, S.J.; Symss, L.S.; Smith, A.C.; Johnson, I.T. The effect of extrusion cooking on iron absorption from maize and potato. J. Sci. Food Agric. 1987, 39, 341–348.

    Article  CAS  Google Scholar 

  • Fairweather-Tait, S.J.; Portwood, D.E.; Symss, L.L.; Eagles, J.; Minski, M.J. Iron and zinc absorption in human subjects from a mixed meal of extruded and nonextruded wheat bran and flour. Am. J. Clin. Nutr. 1989, 49, 151–155.

    CAS  PubMed  Google Scholar 

  • Fukui, K.; Aoyama, T.; Hashimoto, Y.; Yamamoto, T. Effect of extrusion of soy protein isolate on plasma cholesterol level and nutritive value of protein in growing male rats. J. Jap. Soc. Nutr. Food Sci. 1993, 46, 211–216.

    Article  CAS  Google Scholar 

  • Gourgue, C; Champ, M.; Guillon, F.; Delort-Laval, J. Effect of extrusion-cooking on the hypoglycaemic properties of citrus fibre: an in vitro study. J. Sci. Food Agric. 1994, 64, 493–499.

    Article  CAS  Google Scholar 

  • Grossman, M.V.E.; El-Dash, A.A.; Carvalho, J.F. Extrusion cooking of cassava starch for ethanol production. Starch/Stärke 1988, 40, 300–307.

    Article  Google Scholar 

  • Gujska, E; Khan, K. Feed moisture effects on functional properties, trypsin inhibitor, and hemagglutinatingactivities of extruded bean high starch fractions. J. Food Sci. 1991, 54, 443–447.

    Article  Google Scholar 

  • Guzman-Tello, R; Cheftel, J.C. Colour loss during extrusion cooking of beta-carotene-wheat flour mixes as an indicator of the intensity of thermal and oxidative processing. Intl. J. Food Sci. Technol. 1990, 25, 420–434.

    Article  Google Scholar 

  • Harper, J.M. Extrusion of Foods. CRC Press, Inc., Boca Raton, FL, 1981.

    Google Scholar 

  • Hayakawa, I. Food Processing by Ultra High Pressure Twin Screw Extrusion. Technomic Publ. Co., Lancaster, PA, 1992.

    Google Scholar 

  • Huang, H.C.; Hammond, E.G.; Reitmeier, C.A.; Myers, D.J. Properties of fibers produced from soy protein isolate by extrusion and wet spinning. J. Am. Oil Chem. Soc. 1995, 72, 1453–1460.

    Article  CAS  Google Scholar 

  • Jin, Z.; Hsieh, F.; Huff, H.E. Extrusion cooking of corn meal with soy fiber, salt, and sugar. Cereal Chem. 1994, 71, 227–234.

    Google Scholar 

  • Killeit, U. Vitamin retention in extrusion cooking. Food Chem. 1994, 49, 149–155.

    Article  Google Scholar 

  • Kokini, J.L.; Ho, C.-T.; Karwe, M.V, Eds.; Food Extrusion Science and Technology; Marcel Dekker, New York, 1992.

    Google Scholar 

  • Linko, P.; Hakulin, S.; Linko, Y.-Y. Extrusion cooking of barley starch for the production of glucose syrup and ethanol. J. Cereal Sci. 1983, 1, 275–284.

    Article  CAS  Google Scholar 

  • Lombardi-Boccia, G.; Di Lullo, G.; Carnovale, E. In vitro iron dialysability from legumes: influence of phytate and extrusion cooking. J. Sci. Food Agric. 1991, 55, 599–605.

    Article  CAS  Google Scholar 

  • Maga, J.A. Glycoalkaloid stability during the extrusion of potato flakes. J. Food Process. Preserv. 1980, 4, 291–296.

    Article  CAS  Google Scholar 

  • Mercier, C; Linko, P.; Harper, J.M., Eds.; Extrusion Cooking. Am. Assoc. Cereal Chem., St. Paul, MN, 1989.

    Google Scholar 

  • Meuser, F; van Lengerich, B. Systems analytical model for the extrusion of starches. In Thermal Processing and Quality of Foods; Zeuthen, P.; Cheftel, J.C.; Eriksson, C; Jul, M; Leniger, H.; Linko, P.; Varela, G.; Vos, G., Eds.; Elsevier Applied Sci. Publ., London, 1984, pp. 175–179

    Google Scholar 

  • Ning, L.; Villota, R.; Artz, W.E. Modification of corn fiber through chemical treatments in combination with twin-screw extrusion. Cereal Chem. 1991, 68, 632–636.

    Google Scholar 

  • O’Connor, C., Ed., Extrusion Technology for the Food Industry. Elsevier Applied Sci Publ., London, 1987.

    Google Scholar 

  • Ohishi, A.; Watanabe, K.; Urushibata, M.; Utsuno, K.; Ikuta, K.; Sugimoto, K.; Harada, H. Detection of soybean antigenicity and reduction by twin-screw extrusion. J. Am. Oil Chem. Soc. 1994, 71, 1391–1396.

    Article  CAS  Google Scholar 

  • Orford, P.D.; Parker, R.; Ring, S.G. The functional properties of extrusion-cooked waxy-maize starch. J. Cereal Sci. 1993, 18, 277–286.

    Article  CAS  Google Scholar 

  • Politz, M.L.; Timpa, J.D.; Wasserman, B.P. Quantitative measurement of extrusion-induced starch fragmentation products in maize flour using nonaqueous automated gel-permeation chromatography. Cereal Chem. 1994a, 71, 532–536.

    CAS  Google Scholar 

  • Politz, M.L.; Timpa, J.D.; White, A.R.; Wasserman, B.P. Non-aqueous gel permeation chromatography of wheat starch in dimethylacetamide (DMAC) and LiCl: extrusion-induced fragmentation. Carbohydrate Polymers 1994, 24, 91–99.

    Article  CAS  Google Scholar 

  • Qu, D; Wang, S.S. Kinetics of the formations of gelatinized and melted starch at extrusion cooking conditions. Starch/Stärke 1994, 46, 225–229.

    Article  CAS  Google Scholar 

  • Queguiner, C; Dumay, E.; Salou-Cavalier, C; Cheftel, J.C. Microcoagulation of a whey protein isolate by extrusion cooking at acid pH. J. Food Sci. 1992, 57, 610–616.

    Article  CAS  Google Scholar 

  • Ralet, M.-C; Delia Valle, G.; Thibault, J.-F. Solubilization of sugar-beet pulp cell wall polysaccharides by extrusion cooking. Lebensm.-Wiss. u.-Technol. 1991, 24, 107–112.

    CAS  Google Scholar 

  • Ralet, M.-C; Delia Valle, G.; Thibault, J.-F. Raw and extruded fibre from pea hulls. Part I: composition and physico-chemical properties. Carbohydrate Polymers 1993, 20, 17–23.

    Article  CAS  Google Scholar 

  • Roussel, L.; Vielle, A.; Billet, I.; Cheftel, J.C. Sequential heat gelatinization and enzymatic hydrolysis of corn starch in an extrusion reactor. Optimization for a maximum dextrose equivalent. Lebensm.-Wiss. u.-Technol. 1991, 24, 449–458.

    CAS  Google Scholar 

  • Seibel, W; Hu, R. Gelatinization characteristics of a cassava/corn starch based blend during extrusion cooking employing response surface methodology. Starch/Stärke 1994, 46, 217–224.

    Article  CAS  Google Scholar 

  • Semwal, A.D.; Sharma, G.K.; Arya, S.S. Factors influencing lipid autoxidation in dehydrated precooked rice and Bengalgram dhal. J. Food Sci. Technol. 1994, 31, 293–297.

    CAS  Google Scholar 

  • Tepal, J.A.; Castellanos, R.; Larios, A.; Tejada, I. Detoxification of jack beans (Canavalia ensiformis): I- Extrusion and canavaline elimination. J. Sci. Food Agric. 1994, 66, 373–379.

    Article  CAS  Google Scholar 

  • Theander, O; Westerlund, E. Studies on chemical modifications in heat-processed starch and wheat flour. Starch/Stärke 1987, 39, 88–93.

    Article  CAS  Google Scholar 

  • Ummadi, P.; Chenoweth, W.L.; Ng, P.K.W. Changes in solubility and distribution of semolina proteins due to extrusion processing. Cereal Chem. 1995a, 72, 564–567.

    CAS  Google Scholar 

  • Ummadi, P.; Chenoweth, W.L.; Uebersax, M.A.The influence of extrusion processing on iron dialyzability, phytates and tannins in legumes. J. Food Process. Preserv. 1995b, 19, 119–131.

    Article  CAS  Google Scholar 

  • van Zuilichem, D.J.; van Roekel, G.J.; Stolp, W.; van’t Riet, K. Modelling of the enzymatic conversion of cracked corn by twin-screw extrusion cooking. J. Food Engin. 1990, 12, 13–28.

    Article  Google Scholar 

  • Wang, W.-M; Klopfenstein, C.F. Effect of twin-screw extrusion on the nutritional quality of wheat, barley, oats. Cereal Chem. 1993, 70, 712–715.

    CAS  Google Scholar 

  • Wang, W.-M.; Klopfenstein, C.F.; Ponte, J.G. Effects of twin-screw extrusion on the physical properties of dietary fiber and other components of whole wheat and wheat bran and on the baking quality of the wheat bran. Cereal Chem. 1993,70, 707–711.

    Google Scholar 

  • Zhang, Y.; Parsons, C.M.; Weingartner, K.E.; Wijeratne, W.B. Effects of extrusion and expelling on the nutritional quality of conventional and Kunitz trypsin inhibitor-free soybeans. Poultry Sci. 1993, 72, 2299–2308.

    Article  CAS  Google Scholar 

  • Zhao, J; Camire, M.E. Glycoalkaloid content and in vitro solubility of extruded potato peels. J. Agric. Food Chem. 1994, 42, 2570–2573.

    Article  CAS  Google Scholar 

  • Zhao, J; Camire, M.E. Destruction of potato peel trypsin inhibitor by peeling and extrusion cooking. J. Food Qual. 1995, 18, 61–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Camire, M.E. (1998). Chemical Changes during Extrusion Cooking. In: Shahidi, F., Ho, CT., van Chuyen, N. (eds) Process-Induced Chemical Changes in Food. Advances in Experimental Medicine and Biology, vol 434. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1925-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1925-0_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1927-4

  • Online ISBN: 978-1-4899-1925-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics