Skip to main content

Peripheral Sound Processing in Odontocetes

  • Chapter

Part of the book series: NATO Advanced Study Institutes Series ((ASIAS,volume 28))

Abstract

A decade ago two divergent theories describing peripheral sound processing in odontocetes had been formulated. Their differences were unresolved. One view held that sounds were generated in the larynx, radiated through the soft tissue of the throat or transmitted up through the skull and rostrum. Reception was thought restricted to the region of the external auditory meatus, a pinhole in most odontocetes. Sounds gathered at this region were thought to be transmitted to the middle ear via the narrow and sometimes occluded external auditory canal and the tympanic ligament (Fraser and Purves, 1959; Purves, 1966). The second view suggested quite radical modification of both sound reception and transmission paths. Sounds were envisioned as being produced by extra-laryngeal structures adjacent to the nasal passages in the forehead, and transmitted and transduced into the water via the fatty melon of the odontocete forehead, or through the mesorostral canal of the odontocete snout.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blomberg, J., 1978, Functional aspects of odontocete head oil lipids with special reference to pilot whale head oil, Prog. Chem. Fats and other Lipids, 16:257.

    Article  CAS  Google Scholar 

  • Bullock, T.H., Grinnell, A. D., Ikezono, E., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanigasawa, K., 1968, Electrophysiological studies of the central auditory mechanisms in cetaceans, Z. vergl. Physiol., 59:117.

    Google Scholar 

  • Bullock, T. H., and Ridgway, S. H., 1972, Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds, J. Neurobiol., 3:79.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. R., 1978, Buoyancy control as a function of the spermaceti organ in the sperm whale, J. Mar. Biol. Assoc, United Kingdom, 58:27.

    Article  Google Scholar 

  • Clarke, M. R., 1979, The head of the sperm whale, Scientific Amer., 1:128.

    Article  Google Scholar 

  • Diercks, K. J., Trochta, R. T., Greenlaw, R. L., and Evans, W. E., 1971, Recordings and analysis of dolphin echolocation signals, J. Acoust. Soc. Amer., 49:1729.

    Article  Google Scholar 

  • Dormer, K. J., 1974, The mechanism of sound production and measurement of sound processing in delphinid cetaceans, Ph. D. Diss., University of California, Los Angeles.

    Google Scholar 

  • Dubrovsky, N. A., and Zaslavski, G. L., 1975, Role of the skull bones in the space-time development of the dolphin echolocation signal, Sov. Phys. Acoust., 21 (Trans. Amer. Inst. Physics.).

    Google Scholar 

  • Evans, W. E., 1973, Echolocation by marine delphinids and one species of fresh water dolphin, J. Acoust. Soc. Amer., 54 (1):191.

    Article  Google Scholar 

  • Evans, W. E., and Prescott, J. H., 1962, Observations of the sound production capabilities of the bottlenose porpoise: a study of whistles and clicks, Zoologica, 47:121.

    Google Scholar 

  • Evans, W. E., Sutherland, W. W., and Beil, R. G., 1964, The directional characteristics of delphinid sounds, in: “Marine Bio-Acoustics”, W. N. Tavolga, ed.

    Google Scholar 

  • Evans, W. E., and Maderson, P. F. A., 1973, Mechanisms of sound production in delphinid cetaceans: a review and some anatomical considerations, Amer. Zool., 13:1205.

    Google Scholar 

  • Fraser, F. C., and Purves, P. E., 1959, Hearing in whales, Endeavour, 18:93.

    Article  Google Scholar 

  • Giro, L. R., and Dubrovsky, N. A., 1974, The possible role of supra-cranial air sacs in the formation of echo ranging signals, A. Kurstichevkiy Zhurnal, 20:706.

    Google Scholar 

  • Kellogg, W. N., 1960, Auditory scanning in the dolphin, Psychol.Rec, 10:25.

    Google Scholar 

  • Kozak, V. A., 1974, The “video acoustical system” of the sperm whale, Trans.: Zhur. Evolyutsionnoi Biokhimii i Fiziologii, 10(3): 276.

    CAS  Google Scholar 

  • Litchfield, C., and Greenberg, A. J., 1974, Comparative lipid patterns in the melon fats of dolphins, porpoises, and toothed whales, Comp. Biochem. Physiol., 478:401.

    Google Scholar 

  • Malins, D. C., and Varanasi, U., 1977, Acoustic pathways in the cetacean head: assessment of sound properties through the use of a new microtechnique, (abst.), Proc. 2nd Conf. on Biol. of Marine Mammals, 36.

    Google Scholar 

  • McCormick, J. G., Wever, E. G., Palin, J., Ridgway, S. H., 1970, Sound conduction in the dolphin ear, J. Acoust. Soc. Amer., 48:1418.

    Article  Google Scholar 

  • Norris, K. S., 1964, Some problems of echolocation in cetaceans, in: “Marine Bioacoustics”, Pergamon Press, New York.

    Google Scholar 

  • Norris, K. S., 1968, The evolution of acoustic mechanisms in odontocete cetaceans, in: “Evolution and Environment”, E. T. Drake, ed., Yale University Press, New Haven.

    Google Scholar 

  • Norris, K. S., Presscott, J. H., Asadorian, P. V. and Perkins, P., 1961, An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus (Montagu), Biol. Bull., 120:163.

    Article  Google Scholar 

  • Norris, K. S., Evans, W. E., and Turner, R. N., 1966, Echolocation in an Atlantic bottlenose porpoise during discrimination, in: “Les Systèmes Sonars Animaux, Biologie et Bionique, Tome I.”, R. G., Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas.

    Google Scholar 

  • Norris, K. S., and Evans, W. E., 1967, Directionality of echolocation clicks in the rough-tooth porpoise, Steno bredanensis (Lesson), in: “Marine Bio-Acoustics, Vol. 2”, W. N. Tavolga, ed., Pergamon Press, New York.

    Google Scholar 

  • Norris, K. S., Dormer, K. J., Pegg, J., and Liese, G. J., 1971, The mechanisms of sound production and air recycling in porpoises: a preliminary report, in: “Proceedings of the 8th Annual Conference Biol. Sonar and Diving Mammals”.

    Google Scholar 

  • Norris, K. S., and Harvey, G. W., 1972, A theory for the function of the spermaceti organ of the sperm whale (Physeter catodon L.), National Atmos. and Space Admin., Special Publication, 262:397.

    Google Scholar 

  • Norris, K. S., and Harvey, G. W., 1974, Sound transmission in the porpoise head, J. Acoust. Soc. Amer., 56:659.

    Article  CAS  Google Scholar 

  • Purves, P. E., 1966, Anatomical and experimental observations on the cetacean sonar system, in: “Les Systèmes Sonars Animaux, Biologie et Bionique, Tome I”, R. G. Busnel, ed., Laboratoire de Physiologie Acoustique, INRA-CNRZ, Jouy-en-Josas.

    Google Scholar 

  • Raven, H. S., and Gregory, W. K., 1933, The spermaceti organ and nasal passages of the sperm whale (Physeter catodon) and other odontocetes, Amer. Mus. Novitates, 677:1.

    Google Scholar 

  • Schenkkan, E. J. and Purves, P. E., 1973, The comparative anatomy of the nasal tract and the function of the spermaceti organ in the Physeteridae (Mammalia, Odontoceti), Bijdragen tot de Dierkunde, 43:93.

    Google Scholar 

  • Schevill, W. E., and Watkins, W. A., 1966, Sound structure and directionality in Orcinus (Killer Whale), Zoologica, 51:71.

    Google Scholar 

  • Varanasi, U., and Malins, D. G., 1971, Unique lipids of the porpoise (Tursiops gilli): Differences in triacyl glycerols and waxesters of acoustic (mandibular canal and melon) and blubber tissues, Biochem. and Biophys. Acta, 231:415.

    Article  CAS  Google Scholar 

  • Varanasi, U., Feldman, H. R., and Malins, D. C., 1975, Molecular basis for formation of lipid sound lens in echolocating cetaceans, Nature, 255:340.

    Article  CAS  Google Scholar 

  • Watkins, W. A., 1977, Acoustic behavior of sperm whales, Oceanus, 50–58.

    Google Scholar 

  • Wedmid, Y., Litchfield, C., Ackman, R. G., Sipos, J. C., Eaton, C. A., and Mitchell, E., 1973, Heterogeneity of lipid composition within the cephalic melon tissue of the pilot whale (Globicephala melaena), Biochem. and Biophys. Acta, 326:439.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Norris, K.S. (1980). Peripheral Sound Processing in Odontocetes. In: Busnel, RG., Fish, J.F. (eds) Animal Sonar Systems. NATO Advanced Study Institutes Series, vol 28. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7254-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7254-7_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7256-1

  • Online ISBN: 978-1-4684-7254-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics