Skip to main content

Microorganisms and the Biological Cycling of Selenium

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 6))

Abstract

Most studies on the microbial transformations of elements have emphasized nutrient cycling within the biosphere or the economics of agricultural or industrial processes. Cyclic transformations within the biosphere between soluble, insoluble, and gaseous forms of carbon, nitrogen, hydrogen, oxygen, and sulfur are well known. Recently, attention has been focused on the role of microorganisms in the production and degradation of chemicals containing toxic elements (Alexander, 1973; Wood, 1974). Measures to increase animal and food crop production or disposal of waste materials can result in the introduction of elements in amounts harmful to terrestrial and aquatic ecosystems. Many elements and their compounds vary widely in both toxicity and mobility. Consequently, their safe disposal or effective recycling requires an understanding of their potential toxicities and possible transformations in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Erreish, G. M., Whitehead, E. I., and Olson, O. E., 1968, Evolution of volatile selenium from soils, Soil Sci. 106:415–420.

    CAS  Google Scholar 

  • Alexander, M., 1973, Microorganisms and chemical pollution, Bioscience 23:509–515.

    CAS  Google Scholar 

  • Allaway, W. H., 1968, Agronomic controls over the environmental cycling of trace elements, in: Advances in Agronomy (A. G. Norman, ed.), Vol. 20, pp. 235–274, Academic Press, New York.

    Google Scholar 

  • Allaway, W. H., 1973, Selenium in the food chain, Cornell Vet. 63:151–170.

    CAS  PubMed  Google Scholar 

  • Andren, A. W., Klein, D. H., and Talmi, Y., 1975, Selenium in coal-fired steam plant emissions, Environ. Sci. Tech. 9:856–858.

    CAS  Google Scholar 

  • Barkes, L., and Fleming, R. W., 1974, Production of dimethylselenide gas from inorganic selenium by eleven soil fungi, Bull. Environ. Contam. Toxicol. 12:308–311.

    CAS  PubMed  Google Scholar 

  • Bautista, E. M., and Alexander, M., 1972, Reduction of inorganic compounds by soil microorganisms, Soil. Sci. Soc. Am. Proc. 36:918–920.

    CAS  Google Scholar 

  • Bently, M. O., Douglass, I. B., Lacadie, J. A., and Whittier, R. R., 1972, The photolysis of DMS in air, J. Air Pollut. Contr. Assoc. 22:359–363.

    Google Scholar 

  • Bertine, K. K., and Goldberg, E. D., 1971, Fossil fuel combustion and the major sedimentary cycle, Science 173:233–235.

    CAS  PubMed  Google Scholar 

  • Bird, M. L., and Challenger, F., 1942, Studies in biological methylation. Part IX. The action of Scopulariopsis brevicaulis and certain penicillia on salts of aliphatic seleninic and selenonic acids, J. Chern. Soc. 1942:574–577.

    Google Scholar 

  • Bisbjerg, B., 1972, Studies on selenium in plants and soils, Danish Atomic Energy Comm. Res. Estab. Riso Rep. No. 200.

    Google Scholar 

  • Blau, M., 1961, Biosynthesis of (75Se) selenomethionine and (75Se) selenocystine, Biochim. Biophys. Acta 49:389–390.

    CAS  Google Scholar 

  • Bremer, J., and Natori, Y., 1960, Behavior of some selenium compounds in transmethylation, Biochim. Biophys. Acta 44:367–370.

    CAS  Google Scholar 

  • Byard, J. L., 1969, Trimethyl selenide. A urinary metabolite of selenite, Arch. Biochem. Biophys. 130:556–560.

    CAS  PubMed  Google Scholar 

  • Cary, E. E., Wieczorek, G. A., and Allaway, W. H., 1967, Reactions of selenite-Se added to soils that produce low selenium forages, Soil. Sci. Soc. Am. Proc. 31:21–26.

    CAS  Google Scholar 

  • Challenger, F., 1945, Biological methylation, Chern. Rev. 36:315–361.

    CAS  Google Scholar 

  • Challenger, F., and Charlton, P. T., 1947, Studies on biological methylation. Part X. The fission of the mono- and di-sulfide links by moulds, J. Chern. Soc. 1947:424–429.

    Google Scholar 

  • Challenger, F., and North H. E., 1934, The production of organometalIoidal compounds by microorganisms. II. Dimethyl selenide, J. Chern. Soc. 1934:68–71.

    Google Scholar 

  • Challenger, F., Lisle, D. B., and Dransfield, P. B., 1954, Studies on biological methylation. Part XIV. The formation of trimethylarsine and dimethyl selenide in mould cultures from methyl sources containing 14 C, J. Chern. Soc. 1954:1760–1771.

    Google Scholar 

  • Chau, Y. K., Wong, P. T. S., Silverberg, B. A., Luxon, P. L., and Bengert, G. A., 1976, Methylation of selenium in the aquatic environment, Science 192:1130–1131.

    CAS  PubMed  Google Scholar 

  • Coch, E. H., and Greene, R. C., 1971, The utilization of selenomethionine by Escherichia coli. Biochim. Biophys. Acta 230:223–236.

    CAS  PubMed  Google Scholar 

  • Collins, J. M., Wallenstein, A., and Monty, K. J., 1973, Regulatory features of the cysteine desulfhydrase of Salmonella typhimurium. Biochim. Biophys. Acta 313:156–162.

    CAS  PubMed  Google Scholar 

  • Copeland, R., 1970, Selenium: The unknown pollutant, Limnos 3:7–9.

    Google Scholar 

  • Cowie, D. B., and Cohen, G. N., 1957, Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur, Biochim. Biophys. Acta 26:252–261.

    CAS  PubMed  Google Scholar 

  • Cox, D. P., and Alexander, M., 1974, Factors affecting trimethylarsine and dimethylselenide formation by Candida humicola. Microb. Ecol. 1:136–144.

    CAS  PubMed  Google Scholar 

  • Delwiche, E. A., 1951, Activators for the cysteine desulfhydrase system of an Escherichia coli mutant, J. Bacteriol. 62:717–722.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diplock, A. T., Caygill, C. P. J., Jeffery, E. H., and Thomas, C., 1973, The nature of the acidvolatile selenium in the liver of the male rat, Biochem. J. 134:283–293.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doran, J. W., 1976, Microbial transformations of selenium in soil and culture, Ph.D. dissertation, Cornell University, Ithaca, N.Y.

    Google Scholar 

  • Doran, J. W., and Alexander, M., 1975, Microbial formation of dimethyl selenide, Abstracts of the American Society for Microbiology, Annual Meeting, New York, p. 188 (N22).

    Google Scholar 

  • Doran, J. W., and Alexander, M., 1977a, Microbial formation of volatile Se compounds in soil, Soil Sci. Soc. Am. J. 40:687–690.

    Google Scholar 

  • Doran, J. W., and Alexander, M., 1977b, Microbial transformations of selenium, Appl. Environ. Microbiol. 33:31–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duce, R. A., Hoffman, G. L., and Zoller, W. H., 1975, Atmospheric trace metals at remote northern and southern hemisphere sites: pollution or natural?, Science 187:59–61.

    CAS  PubMed  Google Scholar 

  • Dllrre, P., Andersch, W., and Andreesen, J. R., 1981, Isolation and characterization of an adenine- utilizing anaerobic sporeformer, Clostridium purinolyticum sp. nov. Int. J. System. Bacteriol. 31:184–194.

    Google Scholar 

  • Falcone, G., and Giambanco, V., 1967, Synthesis of seleno-amino acids in cell free extracts of Candida albicans. Nature 213:396–398.

    CAS  PubMed  Google Scholar 

  • Falcone, G., and Nickerson, W. J., 1963, Reduction of selenite by intact yeast cells and cell-free preparations, J. Bacteriol. 85:754–762.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fleming, R. W., and Alexander, M., 1972, Dimethylselenide and dimethyltelluride formation by a strain of Penicillium. Appl. Microbiol. 24:424–429.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francis, A. J., Duxbury, J. M., and Alexander, M., 1974, Evolution of dimethylselenide from soils, Appl. Microbiol. 28:248–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franke, K. W., 1934, A new toxicant occurring naturally in certain samples of plant foodstuffs. I. Results obtained in preliminary feeding trials, J. Nutr. 8:597–608.

    CAS  Google Scholar 

  • Freney, J. R., 1967, Sulfur-containing organics, in: Soil Biochemistry (A. D. McLaren and G. H. Peterson, eds.), pp. 229–259, Marcel Dekker, New York.

    Google Scholar 

  • Frost, D. V., 1960, Arsenic and selenium in relation to the food additive law of 1958, Nutr. Rev. 18:129–132.

    CAS  PubMed  Google Scholar 

  • Frost, D. V., 1972, The two faces of selenium-can selenophobia be cured?, Crit. Rev. Toxicol. 1:467–514.

    CAS  Google Scholar 

  • Furr, A. K., Kelly, W. C., Bache, C. A., Gutenmann, W. H., and Lisk, D. J., 1976, Multielement absorption by crops grown in pots on municipal sludge-amended soil, J. Agric. Food Chem. 24:889–892.

    CAS  PubMed  Google Scholar 

  • Furr, A. K., Parkinson, T. F., Bache, C. A., Gutenmann, W. H., Pakkala, I. S., and Lisk, D. J., 1980, Multielement absorption by crops grown on soils amended with municipal sludge ashes, J. Agric. Food Chem. 28:660–662.

    CAS  PubMed  Google Scholar 

  • Ganther, H. E., 1966, Enzymic synthesis of dimethyl selenide from sodium selenite in mouse liver extracts, Biochemistry 5:1089–1098.

    CAS  PubMed  Google Scholar 

  • Ganther, H. E., 1974, Biochemistry of selenium, in: Selenium (R. A. Zingaro and W. C. Cooper, eds.), pp. 546–614, Van Nostrand Reinhold, New York.

    Google Scholar 

  • Ganther, H. E., Goudie, C., Sunde, M. L., Kopecky, M. J., Wagner, P., Qu, S-H, and Hoekstra, W. G., 1972, Selenium: relation to decreased toxicity of methylmercury added to diets containing tuna, Science 173:1122–1124.

    Google Scholar 

  • Geering, H. R., Cary, E. E., Jones, L. H. P., and Allaway, W. H., 1968, Solubility and redox criteria for the possible forms of selenium in soils, Soil Sci. Soc. Am. Proc. 32:35–40.

    CAS  Google Scholar 

  • Gutenmann, W. H., Bache, C. A., Youngs, W. D., and Lisk, D. J., 1976, Selenium in fly ash, Science 191:966–967.

    CAS  PubMed  Google Scholar 

  • Hamdy, A. A., and Gissel-Nielsen, G., 1976, Volatization of selenium from soils, Z. Pflanzenernaehr. Bodenkd. 6:671–678.

    Google Scholar 

  • Hidiroglou, M., Heaney, D. P., and Jenkins, K. J., 1968, Metabolism of inorganic selenium in rumen bacteria, Can. J. Physiol. Pharmacal. 46:229–232.

    CAS  Google Scholar 

  • Hidiroglou, M., Jenkins, K. J., and Knipfel, J. E., 1974, Metabolism of selenomethionine in the rumen, Can. J. Animal Sci. 54:325–330.

    CAS  Google Scholar 

  • Hoffman, J. L., McConnel, K. P., and Carpenter, D. R., 1970, Aminoacylation of Escherichia coli methionine tRNA by selenomethionine, Biochim. Biophys. Acta 199:531–534.

    CAS  PubMed  Google Scholar 

  • Hsieh, H. S., and Ganther, H. E., 1975, Acid-volatile selenium formation catalyzed by glutathione reductase, Biochemistry 14:1632–1636.

    CAS  PubMed  Google Scholar 

  • Huber, R. E., and Criddle, R. S., 1967, Comparison of the chemical properties of selenocysteine and selenocystine with their sulfur analogs, Arch. Biochem. Biophys. 122:164–173.

    CAS  PubMed  Google Scholar 

  • Huey, C., Brinkman, F. E., Grim, S., and Iverson, W. P., 1974, in: Proceedings of the Intl. Conf on Transport of Persistent Chemicals in Aquatic Ecosystems (Q. N. Laltam, ed.), pp. 2–73-2–78, Natl. Res. Council of Canada, Ottowa.

    Google Scholar 

  • Jones, J. B., and Stadtman, T. C., 1977. Methanococcus vannielii: culture and effects of selenium and tungstate on growth. J. Bacteriol. 130:1404–1406.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kadota, H., and Ishida, Y., 1972, Production of volatile sulfur compounds by microorganisms, Annu. Rev. Microbiol. 26:127–138.

    CAS  PubMed  Google Scholar 

  • Kellogg, W. W., Cadle, R. D., Allen, E. R., Lazarus, A. L., and Martell, E. A., 1972, The sulfur cycle, Science 175:587–596.

    CAS  PubMed  Google Scholar 

  • Kharkar, D. P., Turekian, K. K., and Bertine, K. K., 1968, Stream supply of dissolved silver, molybdenum, antimony, selenium, chromium, cobalt, rubidium, and cesium to the oceans, Geochim. Cosmochim. Acta 32:285–298.

    CAS  Google Scholar 

  • Kovalski, V. V., Ermakov, V. V., and Letunova, S. V., 1968, Geochemical ecology of microorganisms in soils with different selenium content, Microbiology 37:103–109.

    Google Scholar 

  • Kubota, J., Allaway, W. H., Carter, D. L., Cary, E. E., and Lazar, V. A., 1967, Selenium in crops in the United States in relation to selenium-responsive diseases of animals, J. Agric. Food. Chem. 15:448–453.

    CAS  Google Scholar 

  • Kubota, J., Cary, E. E., and Gissel-Nielsen, G., 1975, Selenium in the rainwater of the United States and Denmark, in: Symposium on Trace Substances in Environmental Health (D. D. Hemphill, ed.), pp. 123–130, University of Missouri, Columbia.

    Google Scholar 

  • Lag, J., and Steinnes, E., 1974, Soil selenium in relation to precipitation, Ambio 3:237–238.

    CAS  Google Scholar 

  • Lakin, H. W., 1972, Selenium accumulation in soils and its absorption by plants and animals, Geol. Soc. Am. Bull. 83:181–189.

    Google Scholar 

  • Levine, V. E., 1925, The reducing properties of microorganisms with special reference to selenium compounds, J. Bacteriol. 10:217–263.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis, B. G., 1976, Selenium in biological systems, and pathways for its volatilization in higher plants, in: Environmental Biogeochemistry (Vol. I), Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles (J. O. Nriagu, ed.), pp. 389–409, Ann Arbor Science Publishers, Ann Arbor, Mich.

    Google Scholar 

  • Lewis, B. G., Johnson, C. M., and Broyer, T. C., 1974, Volatile selenium in higher plants. The production of dimethyl selenide in cabbage leaves by enzymatic cleavage of Se-methyl selenomethionine selenonium salt, Plant Soil 40:107–118.

    CAS  Google Scholar 

  • Lindstrlöm, K., and Rhode, W., 1978, Selenium as a micronutrient for the dinoflagellate Peridinium cinctum fa. westii, Mitt. Int. Verein Limnol. 21:168–173.

    Google Scholar 

  • Lipman, L. G., and Waksman, S. A., 1923, The oxidation of selenium by a new group of autotrophic microorganisms, Science 57:60.

    CAS  PubMed  Google Scholar 

  • Lovelock, J. E., Maggs, R. J., and Rasmussen, R. A., 1972, Atmospheric dimethyl sulfide and the natural sulfur cycle, Nature 27:452–453.

    Google Scholar 

  • Mackenzie, F. T., Lantzy, R. J., and Paterson, V., 1979, Global trace metal cycles and predictions, J. Int. Assoc. Math. Geol. 11:99–142.

    CAS  Google Scholar 

  • Martin, J. L., 1973, Selenium assimilation in animals, in: Organic Selenium Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Gunther, eds.), pp. 663–691, John Wiley & Sons, New York.

    Google Scholar 

  • Mazelis, M., Levin, B., and Mallinson, N., 1965, Decomposition of methyl methionine sulfonium salts by a bacterial enzyme, Biochim. Biophys. Acta 105:106–114.

    CAS  PubMed  Google Scholar 

  • McBride, B. C., and Wolfe, R. S., 1971, Biosynthesis of dimethylarsine by methanobacterium, Biochemistry 10:4312–4317.

    CAS  PubMed  Google Scholar 

  • McConnell, K. P., and Portman, O. W., 1952, Toxicity of dimethyl selenide in the rat and mouse, Proc. Soc. Exp. Biol. Med. 79:230–231.

    CAS  PubMed  Google Scholar 

  • McCready, R. G. L., Campbell, J. N., and Payne, J. I., 1966, Selenite reduction by Salmonella heidelberg, Can. J. Microbiol. 12:703–714.

    CAS  PubMed  Google Scholar 

  • McDonald, C., and Duncan, H. J., 1979, Atmospheric levels of trace elements in Glasgow, Atmos. Environ. 13:413–417.

    CAS  PubMed  Google Scholar 

  • Moxon, A. L., 1937, Alkali disease or selenium poisoning?, S. Dak. Agr. Exp. Sta. Bull., 311.

    Google Scholar 

  • Mudd, S. H., and Catoni, G. L., 1964, Biological transmethylation, methyl group transfer and other “one-carbon” metabolic reactions dependent upon tetrahydrofolic acid, in: Comprehensive Biochemistry, Vol. 15 (M. Florkin and E. Stotze, eds.), pp. 1–47, Elsevier, Amsterdam.

    Google Scholar 

  • Muth, O. H., Oldfield, J. E., and Weswig, P. H., eds., 1967, Symposium: Selenium in Biomedicine, AVI Publ. Co., Westport, Conn.

    Google Scholar 

  • Natl. Acad. Sci., Nat. Res. Council, U.S.A., 1971, Selenium in nutrition, Subcommittee on Selenium, Committee on Animal Nutrition, Agricultural Board, NAS-NRC, Washington, D.C.

    Google Scholar 

  • Nickerson, W. J., and Falcone, G., 1963, Enzymatic reduction of selenite, J. Bacteriol. 85:763–771.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Obermeyer, B. D., Palmer, I. S., Olson, O. E., and Halverson, A. W., 1971, Toxicity of trimethylselenonium chloride in the rat with and without arsenite, Toxicol. Appl. Pharmacol. 20:135–146.

    CAS  PubMed  Google Scholar 

  • Oehme, F. W., 1972, Mechanisms of heavy metal toxicities, Clin. Toxicol.5:131–167.

    Google Scholar 

  • Olson, O. E., 1967, Soil, plant, animal cycling of excessive levels of selenium, in: Symposium: Selenium in Biomedicine (O. H. Muth, J. E. Oldfield, and P. H. Weswig, eds.), pp. 297–312, AVI Publ. Co., Westport, Conn.

    Google Scholar 

  • Olson, O. E., and Moxon, A. L., 1939, Availability of selenium in soil. Soil Sci. 47:305–311.

    CAS  Google Scholar 

  • Olson, O. E., Whitehead, E. I., and Moxon, A. L., 1942, Occurrence of soluble selenium in soils and its availability to plants, Soil Sci. 54:47–53.

    CAS  Google Scholar 

  • Painter, E. P., 1941, The chemistry and toxicity of selenium compounds with special reference to the selenium problem, Chern. Rev. 28:179–213.

    CAS  Google Scholar 

  • Parizek, J., Ostadalova, J., Kalouskova, J., Babicky, A., and Benes, J., 1971, The detoxifying effects of selenium interrelations between compounds of selenium and certain metals, in: Newer Trace Elements in Nutrition (W. Mertz and W. E. Comatzer, eds.), pp. 85–122, Marcel Dekker, New York.

    Google Scholar 

  • Peterson, P. J., Benson, L. M., and Zieve, R., 1981, The metalloids, in: Plant/Trace Metal Interactions (N. W. Lepp, ed.), pp. 279–342, Applied Science, London.

    Google Scholar 

  • Pillay, K. K. S., Thomas C. C. Jr., and Kaminski, J. W., 1969, Neutron activation analysis of the selenium content of fossil fuels, Nucl. Applic. Technol. 7:478–483.

    CAS  Google Scholar 

  • Pourbaix, Marcel, 1966, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Cebelcor, Brussels.

    Google Scholar 

  • Rasmussen, R. A., 1974, Emission of biogenic hydrogen sulfide, Tellus 26:254–260.

    CAS  Google Scholar 

  • Reamer, D. C., and Zoller, W. H., 1980, Selenium biomethylation products from soil and sewage sludge, Science 208:500–502.

    CAS  PubMed  Google Scholar 

  • Rosenfeld, I., and Beath, O. A., 1964, Selenium-Geobotany, Biochemistry, Toxicity, and Nutrition, Academic Press, New York.

    Google Scholar 

  • Sandholm, M., Oksanen, H. E., and Pesonen, L., 1973, Uptake of selenium by aquatic organisms, Limnol. Oceanog. 18:496–498.

    CAS  Google Scholar 

  • Saposnikov, D. I., 1937, Substitution of sulfur with selenium in photoreduction of carbonic acid by purple sulfur bacteria, Microbiologiya 6:643–644 (in Russian).

    Google Scholar 

  • Sarathchandra, S. U., and Watkinson, J. H., 1981, Oxidation of elemental selenium to selenite by Bacillus megaterium, Science 211:600–601.

    CAS  PubMed  Google Scholar 

  • Schutz, D. F., and Turekian, K. K., 1965, The investigation of the geographical and vertical distribution of several trace elements in sea water using neutron activation analysis, Ge Dchim. Cosmochim. Acta 29:259–313.

    CAS  Google Scholar 

  • Schwarz, K., and Foltz, C. M., 1957, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J. Am. Chern. Soc. 79:3292–3293.

    CAS  Google Scholar 

  • Scott, M. L., 1973, Nutritional importance of selenium, in: Organic Se Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Gunther, eds.), pp. 629–661, John Wiley & Sons, New York.

    Google Scholar 

  • Segal, W., and Starkey, R., 1969, Microbial decomposition of methionine and identity of the resulting sulfur products, J. Bacteriol. 98:908–913.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, J. R., 1973, Selenium and human biology, in: Organic Se Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Gunther, eds.), pp. 693–726, John Wiley & Sons, New York.

    Google Scholar 

  • Shrift, A., 1961, Biochemical interrelations between selenium and sulfur in plants and microorganisms, Fed. Proc. 20:695–702.

    CAS  Google Scholar 

  • Shrift, A., 1972, Selenium toxicity, in: Phytochemical Ecology, Proc. Phytochem. Soc. Sym. 1971 (J. B. Harborne, ed.), pp. 145–161, Academic Press, New York.

    Google Scholar 

  • Shrift, A., 1973, Metabolism of selenium by plants and microorganisms, in: Organic Selenium Compounds: Their Chemistry and Biology (D. L. Klayman and W. H. H. Gunther, eds.), pp. 763–814, John Wiley & Sons, New York.

    Google Scholar 

  • Singer, T. B., and Kearney, E. B., 1955, Enzymatic pathways in the degradation of sulfur containing amino acids, in: Amino Acid Metabolism (W. D. McElroy and H. B. Glass, eds.), pp. 558–590, Johns Hopkins Press, Baltimore.

    Google Scholar 

  • Smith, H. G., 1959, On the nature of the selective action of selenite broth, J. Gen. Microbiol. 21:61–71.

    CAS  PubMed  Google Scholar 

  • Stadtman, T. C., 1971, Vitamin B12, Science 171:859–867.

    CAS  PubMed  Google Scholar 

  • Stadtman, T. C., 1974, Selenium biochemistry, Science 183:915–922.

    CAS  PubMed  Google Scholar 

  • Stadtman, T. C., 1980, Selenium dependent enzymes, Annu. Rev. Biochem. 49:93–110.

    CAS  PubMed  Google Scholar 

  • Suzuoki, T., 1965, A geochemical study of selenium in volcanic exhalation and sulfur deposits. II. On the behavior of selenium and sulfur in volcanic exhalation and sulfur deposits, Chern. Soc. Japan Bull. 38:1940–1946.

    CAS  Google Scholar 

  • Swaine, D. F., 1955, The trace-element content of soils, in: Tech. Comm. No. 48 of the Commonwealth Bur. Soil Sci., pp. 91–99, Rothamsted Exp. Sta., Harpenden, England.

    Google Scholar 

  • Torma, A. E., and Habashi, F., 1972, Oxidation of copper (II) selenide by Thiobacillus ferroxidans, Can. J. Microbiol. 18:1780–1781.

    CAS  PubMed  Google Scholar 

  • Tuve, T., and Williams, H. H., 1961, Metabolism of selenium by Escherichia coli: biosynthesis of selenomethionine, J. Biol. Chern. 236:597–601.

    CAS  Google Scholar 

  • Wagner, C., Lusty, S. M., Jr., Kung, H. F., and Rogers, N. L., 1967, Preparation and properties of trimethylsulfonium-tetrahydrofolate methyltransferase, J. Biol. Chern. 242:1287–1293.

    CAS  Google Scholar 

  • Weiss, K. F., Ayres, J. C., and Kraft, A. A., 1965, Inhibitory action of selenite on Escherichia coli, Proteus vulgaris, and Salmonella thompson, J. Bacteriol. 90:857–862.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss, H. V., Koide, M., and Goldberg, E. D., 1971, Selenium and sulfur in a Greenland ice sheet: relation to fossil fuel combustion, Science 172:261–263.

    CAS  PubMed  Google Scholar 

  • Wiersma, J. H., and Lee, G. F., 1971, Selenium in lake sediments-analytical procedure and preliminary results, Environ. Sci. Technol. 5:1203–1206.

    CAS  Google Scholar 

  • Wilson, L. G., and Bandurski, R. S., 1958, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chern. 233:975–981.

    CAS  Google Scholar 

  • Wong, P. T. S., Chau, Y. K., and Luxon, P. L., 1975, Methylation of lead in the environment, Nature 253:263–264.

    CAS  PubMed  Google Scholar 

  • Wood, J. M., 1971, Environmental pollution by mercury, Adv. Environ. Sci. Technol. 2:36–56.

    Google Scholar 

  • Wood, J. M., 1974, Biological cycles for toxic elements in the environment, Science 183:1049–1052.

    CAS  PubMed  Google Scholar 

  • Woolfolk, C. A., and Whiteley, H. R., 1962, Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. J. Bacteriol. 84:647–658.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Woolson, E. A., and Kearney, P. C., 1973, Persistence and reactions of (14C)-cacodylic acid in soils, Environ. Sci. Technol. 7:47–50.

    CAS  Google Scholar 

  • Zalokar, M., 1953, Reduction of selenite by Neurospora, Arch. Biochem. Biophys. 44:330–337.

    CAS  PubMed  Google Scholar 

  • Zieve, R., and Peterson, P. J., 1981, Factors influencing the volatilization of selenium from soil, Sci. Total Environ. 19:277–284.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Doran, J.W. (1982). Microorganisms and the Biological Cycling of Selenium. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-8318-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-8318-9_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-8320-2

  • Online ISBN: 978-1-4615-8318-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics