Skip to main content

Expression and Functional Analysis of Glutamate Receptors in Glial Cells

  • Chapter
Book cover The Functional Roles of Glial Cells in Health and Disease

Abstract

The brain consists of a complex network in which neurones and glial cells are structurally and functionally interwoven. Astrocytes, the most numerous member of the glial family, were originally considered, along with the whole glial population, to be only of structural importance (Virchow, 1846). For example, during development the radial glia, the precursors of astrocytes, serve as a scaffold at which neurones migrate to form the layered structure of different brain regions such as the cortex, the hippocampus or the cerebellum. During the last two decades, considerable knowledge about astrocytes has accumulated regarding their physiological function. One exciting function is their contribution to the regulation of the extracellular space and, thereby, also of brain excitability (Walz, 1989). Qualities such as their capacity for uptake and metabolism of transmitters, buffering capacity of ions and ability to convey external signals via surface receptors to biological responses within the cells indicate an intimate crosstalk between glial cells and neurones. The other major glial population in the brain are the oligodendrocytes. As small cells with few processes they form the myelin sheath, a highly lipid enriched stack of cell membranes enwrapping 50 to 300αm long axonal segments to enhance the conduction of electrical signals and to inhibit electrical crosstalk between individual axons. Oligodendrocytes are capable of myelinating up to 50 axonal segments simultaneously. Mature oligodendrocytes develop from progenitors originating from the subventricular zone as the germinative layer (Miller, 1996). In vertebrates, progenitors start to migrate to their final destination regions, the presumptive white matter, during the first postnatal week.

*

To whom correspondence should be addressed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T., Sugihara H., Nawa H., Shigemoto R., Mizuno, N, and Nakanishi, S. (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca2+ signal transduction. J. Biol. Chem. 267, 13361–13368.

    PubMed  CAS  Google Scholar 

  • Ahmed Z., Lewis, C.A., and Faber, D.S. (1990). Glutamate stimulates release of Ca2+ from internal stores in astroglia. Brain Res. 516, 165–169.

    Article  PubMed  CAS  Google Scholar 

  • Baba A., Saga H., and Hashimoto, H. (1993). Inhibitory glutamate response on cyclic AMP formation in cultured astrocytes. Neurosci. Lett. 149, 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Balazs R., Miller S., Romano C., de, V.A., Chun Y., and Cotman, C.W. (1997). Metabotropic glutamate receptor mGluR5 in astrocytes: pharmacological properties and agonist regulation. J. Neurochem. 69, 151–163.

    Google Scholar 

  • Berger, T. (1995). AMPA-type glutamate receptors in glial precursor cells of the rat corpus callosum: ionic and pharmacological properties. Glia 14, 101–114.

    Article  PubMed  CAS  Google Scholar 

  • Berger T., Walz W., Schnitzer J., and Kettenmann, H. (1992). GABA-and glutamate-activated currents in glial cells of the mouse corpus callosum slice. J. Neurosci. Res. 31, 21–27

    Article  PubMed  CAS  Google Scholar 

  • Bezzi P., Carmignoto G., Pasti L., Vesce S., Rossi D., Rizzini, B.L., Pozzan T., and Volterra, A. (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285.

    Article  PubMed  CAS  Google Scholar 

  • Borges K., Ohlemeyer C., Trotter J., and Kettenmann, H. (1994). AMPA/kainate receptor activation in murine oligodendrocyte precursor cells leads to activation of a cation conductance, calcium influx, and blockade of delayed rectifying K+ channels. Neuroscience 63, 135–149.

    Article  PubMed  CAS  Google Scholar 

  • Bruno V., Sureda, EX., Storto M., Casabona G., Caruso A., Knopfel T., Kuhn R., and Nicoletti, F. (1997). The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J. Neurosci. 17, 1891–1897.

    PubMed  CAS  Google Scholar 

  • Brusa R., Zimmermann, E, Koh, D.S., Feldmeyer D., Gass P., Seeburg, PH., and Sprengel, R. (1995). Earlyonset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270, 1677–1680.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N, Khodorova A., Jonas P., Helm, P.J., Wisden W., Monyer H., Seeburg, PH., and Sakmann, B. (1992a). Calcium-permeable AMPA-kainate receptors in fusiform cerebellar glial cells. Science 256, 1566–1570.

    Article  PubMed  CAS  Google Scholar 

  • Burnashev, N, Monyer H., Seeburg, PH., and Sakmann, B. (1992b). Divalent ion permeability of AMPA receptor channels is dominated by the edited form of a single subunit. J. Neurosci. 8, 189–198.

    CAS  Google Scholar 

  • Cai, Z. and Kimelberg, H.K. (1997). Glutamate receptor-mediated calcium responses in acutely isolated hippocampal astrocytes. Glia 21, 380–389.

    Article  PubMed  CAS  Google Scholar 

  • Carmignoto G., Pasti L., and Pozzan T (1998). On the role of voltage-dependent calcium channels in calcium signaling of astrocytes in situ. J. Neurosci. 18, 4637–4645.

    PubMed  CAS  Google Scholar 

  • Charles, A.C., Merrill, J.E., Dirksen, E.R., and Sanderson, M.J. (1991). Intercellular signaling in glial cells: calcium waves and oscillations in response to mechanical stimulation and glutamate. J. Neurosci. 6, 983–992.

    CAS  Google Scholar 

  • Ciccarelli R., Sureda, EX., Casabona G., Di, I.P, Caruso A., Spinella, E, Condorelli, D.E, Nicoletti, E, and Caciagli, E (1997). Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and-5 on astrocyte proliferation in culture. Glia 21, 390–398.

    Article  PubMed  CAS  Google Scholar 

  • Clark, B.A. and Barbour, B. (1997). Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices. J. Physiol. Lond. 502, 335–350.

    Article  PubMed  CAS  Google Scholar 

  • Collingridge, G.L. and Singer, W. (1990). Excitatory amino acid receptors and synaptic plasticity. Trends. Pharmacol. Sci. 11, 290–296.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli D.F. Del’Albani P. Amico C. Casabona G. Genazzani A.A. Sorti M.A. and Nicoletti F. 1992. Development profile of metabotropic glutamate receptor mRNA in rat brain. Mol. Pharmacol. 41 660–664

    Google Scholar 

  • Condorelli, D.F, Del’Albani P., Amico C., Kaczmarek L., Nicoletti F., Lukasiuk K., and Stella, A.M. (1993). Induction of primary response genes by excitatory amino acid receptor agonists in primary astroglial cultures. J. Neurochem. 60, 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, D.F, Del’Albani P., Corsaro M., Giuffrida R., Caruso A., Salinaro, A.T., Spinella, F, Nicoletti, F, Albanese V., and Giuffrida (1997). Metabotropic glutamate receptor expression in cultured rat astrocytes and human gliomas. Neurochem. Res. 22, 1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, D.F, Ingrao, F, Magri G., Bruno V., Nicoletti, F, and Avola, R. (1989a). Activation of excitatory amino acid receptors reduces thymidine incorporation and cell proliferation rate in primary cultures of astrocytes. Glia 2, 67–69.

    Article  PubMed  CAS  Google Scholar 

  • Condorelli, D.F, Kaczmarek L., Nicoletti, F, Arcidiacono A., Dell, Ingrao, F, Magri G., Malaguarnera L., Avola R., Messina A., and et al. (1989b). Induction of protooncogene fos by extracellular signals in primary glial cell cultures. J. Neurosci. Res. 23, 234–239.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F, DeBiasi S., Minelli A., and Melone, M. (1996). Expression of NR1 and NR2A/B subunits of the NMDA receptor in cortical astrocytes. Glia 17, 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F, Minelli A., and Brecha, N.C. (1994a). Cellular localization and laminar distribution of AMPA glutamate receptor subunits mRNAs and proteins in the rat cerebral cortex. J. Comp. Neurol. 350, 241–259.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F, Minelli A., Molnar M., and Brecha, N.C. (1994b). Cellular localization and laminar distribution of NMDAR1 mRNA in the rat cerebral cortex. J. Comp. Neurol. 343, 554–565.

    Article  PubMed  CAS  Google Scholar 

  • Conti, F, Melone M., De Biasi S., and Ducati, A. (1998) Neuronal and glial localization of NR1 and NR2A/B subunits of the NMDA receptor in human cerebral cortex. Cereb. Cortex, in press.

    Google Scholar 

  • Cornell Bell, A.H., Finkbeiner, S.M., Cooper, M.S., and Smith, S.J. (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473.

    Article  PubMed  CAS  Google Scholar 

  • Das S., Sasaki, Y.F, Rothe, T., Premkumar, L.S., Takasu M., Crandall, J.E., Dikkes P., Conner, D.A., Rayudu, P.V., Cheung W., Chen, H.S., Lipton, S.A., and Nakanishi, N. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature 393, 377–381.

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin, R.M., Zhang C., and Ramonell, K. (1995). A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J. Neurosci. 15, 3075–3083.

    PubMed  CAS  Google Scholar 

  • Enkvist, M.O., Holopainen I., and Akerman, K.E. (1989). Glutamate receptor-linked changes in membrane potential and intracellular Ca2+ in primary rat astrocytes. Glia 2, 397–402.

    Article  PubMed  CAS  Google Scholar 

  • Ferrer, M.A. and Montal, M. (1996). Pentameric subunit stoichiometry of a neuronal glutamate receptor. Proc. Natl. Acad. Sci. U.S.A. 93, 2741–2744.

    Article  Google Scholar 

  • Fletcher, E.J., Nutt, S.L., Hoo, K.H., Elliott, C.E., Korczak B., McWhinnie, and Kamboj, R.K. (1995). Cloning, expression and pharmacological characterization of a human glutamate receptor: hGluR4. Receptors. Channels. 3, 21–31.

    PubMed  CAS  Google Scholar 

  • Fulton, B.P., Burne, J.F, and Raff, M.C. (1992). Visualization of 0-2A progenitor cells in developing and adult rat optic nerve by quisqualate-stimulated cobalt uptake. J. Neurosci. 12, 4816–4833.

    PubMed  CAS  Google Scholar 

  • Gallo, V. and Russell, J.T. (1995). Excitatory amino acid receptors in glia: different subtypes for distinct functions? J. Neurosci. Res. 42, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Gallo V., Zhou, J.M., McBain, C.J., Wright P., Knutson, PL., and Armstrong, R.C. (1996). Oligodendrocyte progenitor cell proliferation and lineage progression are regulated by glutamate receptor-mediated K+ channel block. J. Neurosci. 16, 2659–2670.

    PubMed  CAS  Google Scholar 

  • Glaum, S.R., Holzwarth, J.A., and Miller, R.J. (1990). Glutamate receptors activate Ca2+ mobilization and Ca2+ influx into astrocytes. Proc. Natl. Acad. Sci. U.S.A. 87, 3454–3458.

    Article  PubMed  CAS  Google Scholar 

  • Gravel M., DeAngelis D., and Braun, PE. (1994). Molecular cloning and characterization of rat brain 2’,3’-cyclic nucleotide 3’-phosphodiesterase isoform 2. J. Neurosci. Res. 38, 243–247.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann, M. and Heinemann, S. (1994). Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108.

    Article  PubMed  CAS  Google Scholar 

  • Ishida M., Saitoh T., Shimamoto K., Ohfune Y., and Shinozaki, H. (1993). A novel metabotropic glutamate receptor agonist: marked depression of monosynaptic excitation in the newborn rat isolated spinal cord. Br. J. Pharmacol. 109, 1169–1177.

    Article  PubMed  CAS  Google Scholar 

  • Jabs R., Kirchhoff, F, Kettenmann H., and Steinhäuser, C. (1994). Kainate activates Ca(2+)-permeable glutamate receptors and blocks voltage-gated K+ currents in glial cells of mouse hippocampal slices. Pflügers Arch. 426, 310–319.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, A.M. and Chiu, S.Y. (1990). Fluorescence measurement of changes in intracellular calcium induced by excitatory amino acids in cultured cortical astrocytes. J. Neurosci. 10, 1165–1175.

    PubMed  CAS  Google Scholar 

  • Kingston, A.E., Burnett, J.P., Mayne, N.G., and Lodge, D. (1995). Pharmacological analysis of 4-carboxyphenylglycine derivatives: comparison of effects on mGluRl alpha and mGluR5a subtypes. Neuropharmacology 34, 887–894.

    Article  PubMed  CAS  Google Scholar 

  • Knutson P., Ghiani, C.A., Zhou, J.M., Gallo V., and McBain, C.J. (1997). K+ channel expression and cell proliferation are regulated by intracellular sodium and membrane depolarization in oligodendrocyte progenitor cells. J. Neurosci. 17, 2669–2682.

    PubMed  CAS  Google Scholar 

  • Kriegler, S. and Chiu, S.Y. (1993). Calcium signaling of glial cells along mammalian axons. J. Neurosci. 13, 4229–4245.

    PubMed  CAS  Google Scholar 

  • Laube B., Kuhse J., and Betz, H. (1998). Evidence for a tetrameric structure of recombinant NMDA receptors. J. Neurosci. 18, 2954–2961.

    PubMed  CAS  Google Scholar 

  • Linden, D.J. (1997). Long-term potentiation of glial synaptic currents in cerebellar culture. J. Neurosci. 18, 983–994.

    CAS  Google Scholar 

  • LoTurco, J.J., Owens, D.F., Heath, M.J., Davis, M.B., and Kriegstein, A.R. (1995). GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. J. Neurosci. 15, 1287–1298.

    CAS  Google Scholar 

  • Mano, I. and Teichberg, V.I. (1998). A tetrameric subunit stoichiometry for a glutamate receptor-channel complex. Neuroreport. 9, 327–331.

    Article  PubMed  CAS  Google Scholar 

  • McNaughton, L.A. and Hunt, S.P. (1992). Regulation of gene expression in astrocytes by excitatory amino acids. Brain Res. Mol. Brain Res. 16, 261–266.

    Article  PubMed  CAS  Google Scholar 

  • Melcher T., Maas S., Higuchi M., Keller, W, and Seeburg, P.H. (1995). Editing of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR-B pre-mRNA in vitro reveals site-selective adenosine to inosine conversion. J. Biol. Chem. 270, 8566–8570.

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B. and Garthwaite, J. (1990). Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends.Pharmacol.Sci. 11, 379–387.

    Article  PubMed  CAS  Google Scholar 

  • Milani D., Facci L., Guidolin D., Leon A., and Skaper, S.D. (1989). Activation of polyphosphoinositide metabolism as a signal-transducing system coupled to excitatory amino acid receptors in astroglial cells. Glia 2, 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Miller, R.H. (1996). Oligodendrocyte origins. Trends.Neurosci. 19, 92–96.

    Article  PubMed  CAS  Google Scholar 

  • Miller S., Bridges, R.J., Chamberlin, A.R., and Cotman, C.W. (1994). Pharmacological dissociation of glutamatergic metabotropic signal transduction pathways in cortical astrocytes. Eur. J. Pharmacol. 269, 235–241.

    Article  PubMed  CAS  Google Scholar 

  • Miller S., Bridges, R.J., and Cotman, C.W. (1993). Stimulation of phosphoinositide hydrolysis by trans-(+/-)-ACPD is greatly enhanced when astrocytes are cultured in a serum-free defined medium. Brain Res. 618, 175–178.

    Article  PubMed  CAS  Google Scholar 

  • Miller S., Cotman, C.W., and Bridges, R.J. (1992). l-Aminocyclopentane-trans-l,3-dicarboxylic acid induces glutamine synthetase activity in cultured astrocytes. J. Neurochem. 58, 1967–1970.

    Article  PubMed  CAS  Google Scholar 

  • Miller S., Romano G., and Cotman, C.W. (1995). Growth factor upregulation of a phosphoinositide-coupled metabotropic glutamate receptor in cortical astrocytes. J. Neurosci. 15, 6103–6109.

    PubMed  CAS  Google Scholar 

  • Miller S. Sehati N Roma C. and Cotman C.W. 1996. Exposure of astrocytes to thrombin reduces levels of the metabotropic glutamate receptor mGluR5. J. Neurochem. 67 1435–1447

    Google Scholar 

  • Müller T., Müller T., Berger T., Schnitzer J., and Kettenmann, H. (1992). Calcium entry through kainate receptors and resulting potassium-channel blockade in Bergmann glial cells [published erratum appears in Science 1992 Aug 28;257(5074):1190]. Science 256, 1563–1566.

    Article  PubMed  Google Scholar 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S. (1994a). Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. J. Neurosci. 13, 1031–1037.

    CAS  Google Scholar 

  • Nakanishi, S. and Masu, M. (1994b). Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319–348.

    Article  PubMed  CAS  Google Scholar 

  • Newman, E.A. and Zahs, K.R. (1998). Modulation of neuronal activity by glial cells in the retina. J. Neurosci. 18, 4022–4028.

    PubMed  CAS  Google Scholar 

  • Nicoletti, E, Magri G., Ingrao, E, Bruno V., Catania, M.V., Del’Albani, Condorelli, D.F., and Avola, R. (1990). Excitatory amino acids stimulate inositol phospholipid hydrolysis and reduce proliferation in cultured astrocytes. J. Neurochem. 54, 771–777.

    Article  PubMed  CAS  Google Scholar 

  • Ogata T., Nakamura Y., and Schubert, P. (1996). Potentiated cAMP rise in metabotropically stimulated rat cultured astrocytes by a Ca2+-related A1/A2 adenosine receptor cooperation. Eur. J. Neurosci. 8, 1124–1131.

    Article  PubMed  CAS  Google Scholar 

  • Ohishi H., Ogawa, M.R., Shigemoto R., Kaneko T., Nakanishi S., and Mizuno, N. (1994). Immunohistochemical localization of metabotropic glutamate receptors, mGluR2, and mGluR3, in rat cerebellar cortex. J. Neurosci. 13, 55–66.

    CAS  Google Scholar 

  • Ohishi H., Shigemoto R., Nakanishi S., and Mizuno, N. (1993). Distribution of the mRNA for a metabotropic glutamate receptor (mluR3) in the rat brain: an in situ hybridization study. J. Comp. Neurol. 335, 252–266.

    Article  PubMed  CAS  Google Scholar 

  • Pasti L., Volterra A., Pozzan T., and Carmignoto, G. (1997). Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830.

    PubMed  CAS  Google Scholar 

  • Pasti L., Pozzan T., and Carmignoto, G. (1995). Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem. 270, 15203–15210.

    Article  PubMed  CAS  Google Scholar 

  • Patneau, D.K., Wright, P.W., Winters C., Mayer, M.L., and Gallo, V. (1994). Glial cells of the oligodendrocyte lineage express both kainate-and AMPA-preferring subtypes of glutamate receptor. J. Neurosci. 12, 357–371.

    CAS  Google Scholar 

  • Pearce B., Albrecht J., Morrow C., and Murphy, S. (1986). Astrocyte glutamate receptor activation promotes inositol phospholipid turnover and calcium flux. Neurosci. Lett. 72, 335–340.

    Article  PubMed  CAS  Google Scholar 

  • Petralia, R.S., Wang, Y.X., Niedzielski, A.S., and Wenthold, R.J. (1996). The metabotropic glutamate receptors, mGluR2, and mGluR3, show unique postsynaptic, presynaptic, and glial localizations. Neuroscience 71, 949–976.

    Article  PubMed  CAS  Google Scholar 

  • Petralia, R.S. and Wenthold, R.J. (1992). Light and electron immunocytochemical localization of AMPA-selective glutamate receptors in the rat brain. J. Comp. Neurol. 318,329–354.

    Google Scholar 

  • Pfrieger, F.W and Barres, B.A. (1997). Synaptic efficacy enhanced by glial cells in vitro. Science 277, 1684–1687.

    Article  PubMed  CAS  Google Scholar 

  • Porter, J.T. and McCarthy, K.D. (1996). Hippocampal astrocytes in situ respond to glutamate released from synaptic terminals. J. Neurosci. 16, 5073–5081.

    PubMed  CAS  Google Scholar 

  • Prezeau L., Carrette J., Helpap B., Curry K., Pin, J.P., and Bockaert, X (1994). Pharmacological characterization of metabotropic glutamate receptors in several types of brain cells in primary cultures. Mol. Pharmacol. 45, 570–577.

    PubMed  CAS  Google Scholar 

  • Ransom, B.R. and Orkand, R.K. (1996). Glial-neuronal interactions in non-synaptic areas of the brain: studies in the optic nerve. Trends. Neurosci. 19, 352–358.

    Article  PubMed  CAS  Google Scholar 

  • Rosenmund C., Stern, B.Y., and Stevens, C.F. (1998). The tetrameric structure of a glutamate receptor channel [see comments]. Science 280, 1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Rusakov, D.A. and Kullmann, D.M. (1998). Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. X Neurosci. 18, 3158–3170.

    CAS  Google Scholar 

  • Saugstad, J.A., Kinzie, J.M., Shinohara, M.M., Segerson, T.P., and Westbrook, G.L. (1997). Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol. Pharmacol. 51, 119–125.

    PubMed  CAS  Google Scholar 

  • Schoepp, D.D. and Conn, P.J. (1993). Metabotropic glutamate receptors in brain function and pathology. Trends. Pharmacol. Sci. 14, 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Schoepp, D.D., Goldsworthy J., Johnson, B.G., Salhoff, C.R., and Baker, S.R. (1994). 3,5-dihydroxyphenyl-glycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. X Neurochem. 63,769–772.

    Article  CAS  Google Scholar 

  • Seeburg, PH. (1996). The role of RNA editing in controlling glutamate receptor channel properties. X Neurochem. 66, 1–5.

    Article  CAS  Google Scholar 

  • Segeleon, J.E., Lipscomb, D.C., Haun, S.E., Trapp, V.L., and Horrocks, L.A. (1995). Astroglial phosphoinositide hydrolysis during combined glucose-oxygen deprivation: role of the metabotropic glutamate receptor. X Neurochem. 65, 1115–1123.

    Article  CAS  Google Scholar 

  • Seifert G., Rehn L., Weber M., and Steinhäuser, C. (1997a). AMPA receptor subunits expressed by single astrocytes in the juvenile mouse hippocampus. Brain Res. Mol. Brain Res. 47, 286–294.

    Article  PubMed  CAS  Google Scholar 

  • Seifert G., Zhou M., and Steinhäuser, C. (1997b). Analysis of AMPA receptor properties during postnatal development of mouse hippocampal astrocytes. X Neurophysiol. 78, 2916–2923.

    CAS  Google Scholar 

  • Sommer B., Keinanen K., Verdoorn, T.A., Wisden, W, Burnashev, N, Herb A., Kohler M., Takagi T., Sakmann B., and Seeburg, PH. (1990). Flip and flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science 249, 1580–1585.

    Article  PubMed  CAS  Google Scholar 

  • Sommer B., Kohler M., Sprengel R., and Seeburg, PH. (1991). RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell 67, 11–19.

    Article  PubMed  CAS  Google Scholar 

  • Sontheimer H. Black J.A. and Waxman S.G 1996. tage-gated Na+ channels in glia properties and possible functions. Trends. Neurosci. 19 325–331

    Google Scholar 

  • Steinhäuser, C. and Gallo, V. (1996). News on glutamate receptors in glial cells. Trends. Neurosci. 19, 339–345.

    Article  PubMed  Google Scholar 

  • Stella, N., Tence M., Glowinski J., and Premont, X (1994). Glutamate-evoked release of arachidonic acid from mouse brain astrocytes. X Neurosci. 14, 568–575.

    CAS  Google Scholar 

  • Stern P., Behe P., Schoepfer R., and Colquhoun, D. (1992). Single-channel conductances of NMDA receptors expressed from cloned cDNAs: comparison with native receptors. Proc. R. Soc. Lond. B. Biol. Sci. 250, 271–277.

    Article  CAS  Google Scholar 

  • Sucher, N.J., Akbarian S., Chi, C.L., Leclerc, C.L., Awobuluyi M., Deitcher, Wu, M.K., Yuan, J.P., Jones, E.G., and Lipton, S.A. (1995). Developmental and regional expression pattern of a novel NMDA receptorlike subunit (NMDAR-L) in the rodent brain. J. Neurosci. 15, 6509–6520.

    PubMed  CAS  Google Scholar 

  • Testa, C.M., Standaert, D.G., Young, A.B., and Penney-JB, J. (1994). Metabotropic glutamate receptor mRNA expression in the basal ganglia of the rat. J. Neurosci. 14, 3005–3018.

    PubMed  CAS  Google Scholar 

  • Theodosis, D.T. and Mac Vicar, B. (1996). Neurone-glia interactions in the hypothalamus and pituitary. Trends. Neurosci. 19, 363–367.

    Article  PubMed  CAS  Google Scholar 

  • Thomsen C., Bruno V., Nicoletti F., Marinozzi M., and Pellicciari, R. (1996). (2S,l’S,2’S,3’R)-2-(2’-carboxy3’-phenylcyclopropyl)glycine, a potent and selective antagonist of type 2 metabotropic glutamate receptors. Mol. Pharmacol. 50, 6–9.

    PubMed  CAS  Google Scholar 

  • Trapp, B.D., Bernier L., Andrews, S.B., and Colman, D.R. (1988). Cellular and subcellular distribution of 2’,3’-cyclic nucleotide 3’-?hosphodiesterase and its mRNA in the rat central nervous system. J. Neurochem. 51, 859–868.

    Article  PubMed  CAS  Google Scholar 

  • Verkhratsky, A. and Kettenmann, H. (1996). Calcium signalling in glial cells. Trends.Neurosci. 19, 346–352.

    Article  PubMed  CAS  Google Scholar 

  • Virchow, R. (1846). Über das granulierte Ansehen der Wandungen der Gehirnventrikel. Allg. Z. Psychatr. 3, 242.

    Google Scholar 

  • Vissavajjhala P., Janssen, W.G., Hu, Y, Gazzaley, A.H., Moran, T., Hof, P.R., and Morrison, J.H. (1996). Synaptic distribution of the AMPA-GluR2 subunit and its colocalization with calcium-binding proteins in rat cerebral cortex: an immunohistochemical study using a GluR2-specific monoclonal antibody. Exp. Neurol. 142, 296–312.

    Article  PubMed  CAS  Google Scholar 

  • von Blankenfeld, G. and Kettenmann, H. (1991). Glutamate and GABA receptors in vertebrate glial cells. Mol. Neurobiol. 5, 31–43.

    Article  PubMed  CAS  Google Scholar 

  • Walz W. 1989. Role of glial cells in the regulation of the brain ion microenvironment. Prog. Neurobiol. 33 309–333

    Google Scholar 

  • Weinreich, D. and Hammerschlag, R. (1975). Nerve impulse-enhanced release of amino acids from nonsynaptic regions of peripheral and central nerve trunks of bullfrog. Brain Res. 84, 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, D.D., Boyarsky, L.L., and Brooks, W.H. (1966). The release of amino acids from nerve during stimulation. J.Cell Physiol. 67, 141–147.

    Article  PubMed  CAS  Google Scholar 

  • Winder, D.G. and Conn, P.J. (1996a). Roles of metabotropic glutamate receptors in glial function and glialneuronal communication. J. Neurosci. Res. 46, 131–137.

    Article  PubMed  CAS  Google Scholar 

  • Winder, D.G., Ritch, P.S., Gereau, R.W, and Conn, P.J. (1996b). Novel glial-neuronal signalling by coactiva-tion of metabotropic glutamate and beta-adrenergic receptors in rat hippocampus. J. Physiol. Lond. 494, 743–755.

    PubMed  CAS  Google Scholar 

  • Yuan X., Eisen, A.M., McBain, C.J., and Gallo, V. (1998). A role for glutamate in the regulation of oligodendrocyte development in cerebellar tissue slices. Development 125, 2901–2914.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Condorelli, D.F. et al. (1999). Expression and Functional Analysis of Glutamate Receptors in Glial Cells. In: Matsas, R., Tsacopoulos, M. (eds) The Functional Roles of Glial Cells in Health and Disease. Advances in Experimental Medicine and Biology, vol 468. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4685-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4685-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7121-2

  • Online ISBN: 978-1-4615-4685-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics