Skip to main content

Construct Explication through Factor or Component Analysis: A Review and Evaluation of Alternative Procedures for Determining the Number of Factors or Components

  • Chapter

Abstract

The concept of a construct is central to many of the advances in the behavioral sciences during the second half of this century. Constructs serve to summarize, organize, and facilitate the interpretation of data. The concept of a construct also permits us to move directly from data analysis to theory development and testing. Factor analysis and component analysis are two very similar methods that facilitate the transition from dealing with a large number of observed variables to a smaller number of constructed or latent variables. Douglas Jackson employed factor or component analysis as an integral part of his sequential approach to the development of psychological measures (Jackson, 1970, 1971). It has become a standard part of measure development and is one of the most employed statistical procedures in the behavioral sciences.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, S. J & Hubbard, R. (1986). Regression equations for the latent roots of random data correlation matrices with unities on the diagonal. Multivariate Behavioral Research, 21, 393–398.

    Article  Google Scholar 

  • Anderson, R. D., Acito, F. & Lee, H. (1982). A simulation study of three methods for determining the number of image components. Multivariate Behavioral Research, 17, 493–502.

    Article  Google Scholar 

  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, Statistical Section, 3, 77–85.

    Article  Google Scholar 

  • Bartlett, M. S. (1951). A further note on tests of significance in factor analysis. British Journal of Psychology, Statistical Section, 4, 1–2.

    Article  Google Scholar 

  • Bentler, P. M. (1980). Multivariate analysis with latent variables: Causal modeling. In M. R. Rosenzweig & L. W. Porter (eds.), Annual Review of Psychology, (pp. 419–454). Stanford, CA Annual Reviews, Inc.

    Google Scholar 

  • Bentler, P.M. & Kano, Y, (1990). On the equivalence of factors and components. Multivariate Behavioral Research, 51, 67–74.

    Article  Google Scholar 

  • Bookstein, F. L. (1990). Least squares and latent variables. Multivariate Behavioral Research, 25, 75–80.

    Article  Google Scholar 

  • Boomsma, A. (1983). On the robustness of LJSREL (maximum likelihood) estimates against small sample sizes and non-normality. Unpublished doctoral dissertation, kijksuniversiteit Gronigen, the Netherlands.

    Google Scholar 

  • Cattell, R. B. (1966). The scree test for the number of fastors. Multivariate Behavioral Research, 1, 245–276.

    Article  Google Scholar 

  • Cattell, R. B. & Jaspers, J. (1967). A general plasmode for factor analytic exercises and research. Multivariate Behavioral Research Monographs, 3, 1–212.

    Google Scholar 

  • Cattell, R. B. & Vogelmann, S. A (1977). A comprehensive trial of the scree and Kaiser-Guttman criteria for determining the number of factors. Multivariate Behavioral Research, 12, 289–325.

    Article  Google Scholar 

  • Cliff, N. (1970). The relation between sample and population characteristic vectors. Psychometrika, 35, 163–178.

    Article  Google Scholar 

  • Cliff, N. (1988). The eigenvalue greater than one rule and the reliability of components. Psychological Bulletin, 103, 276–279.

    Article  Google Scholar 

  • Cliff, N. & Hamburger, C. (1967). Study of sampling errors in factor analysis by means of artificial experiments. Psychological Bulletin, 68, 430–445.

    Article  PubMed  Google Scholar 

  • Crawford, C. B. & Koopman, P. (1973). A note on Horn’s test for the number of factors in factor analysis. Multivariate Behavioral Research, 8, 117–125.

    Article  Google Scholar 

  • Eaton, C. A., Velicer, W. F., & Fava, J. L. (1999). Determining the Number of Components: An Evaluation of Parallel Analysis and the Minimum Average Partial Correlation Procedures. Manuscript under review.

    Google Scholar 

  • Fava, J. L., & Velicer, W.F. (1992a). An empirical comparison of factor, image, component, and scale scores. Multivariate Behavioral Research, 27, 301–322.

    Article  Google Scholar 

  • Fava, J. L., & Velicer, W.F. (1992b). The effects of overextraction on factor and component analysis. Multivariate Behavioral Research, 27, 387–415.

    Article  Google Scholar 

  • Fava, J. L., & Velicer, W.F. (1996). The effects of underextraction in factor and component analysis. Educational and Psychological Measurement, 56, 907–929.

    Article  Google Scholar 

  • Gorsuch, R. L. (1973). Using Bartlett’s significance test to determine the number of factors to extract. Educational and Psychological Measurement, 33, 361–364.

    Article  Google Scholar 

  • Gorsuch, R. L. (1983). Factor Analysis. (2nd ed.) Hillsdale, N. J.: Lawrence Erlbaum.

    Google Scholar 

  • Gorsuch, R.L. (1991). UniMult Guide. Altadena, CA: UniMult

    Google Scholar 

  • Guttman, L. (1990). Common factor analysis versus component analysis Some well and little known facts. Multivariate Behavioral Research, 25, 33–39.

    Article  Google Scholar 

  • Guttman, L. (1954). Some necessary conditions for common factor analysis. Psychometrika, 19, 149–162.

    Article  Google Scholar 

  • Guadagnoli, E. & Velicer, W. F. (1988). Relation of sample size to the stability of component patterns. Psychological Bulletin, 103, 265–275.

    Article  PubMed  Google Scholar 

  • Guadagnoli, E. & Velicer, W. (1991). A comparison of pattern matching indices. Multivariate Behavioral Research, 26, 323–343.

    Article  Google Scholar 

  • Hakstian, A R., Rogers, W. T., & Cattell, R. B. (1982). The behavior of number-of-factors rules with simulated data. Multivariate Behavioral Research, 17, 193–219.

    Article  Google Scholar 

  • Hays, R-D. (1987). PARALLEL: A program for performing parallel analysis. Applied Psychological Measurement, 11, 58.

    Article  Google Scholar 

  • Holden, R. R., Longman, R. S., Cota, A. A., & Fekken, G. C. (1989). PAR: Parallel analysis routine for random data eigenvalue estimation. Applied PsychologicalMeasurement, 13, 192.

    Article  Google Scholar 

  • Horn, J.L. (1965). A Rationale and test for the number of factors in factor analysis. Psychometrika, 30, 179–185.

    Article  PubMed  Google Scholar 

  • Horn, J.L & Engstrom, R. (1979). Cattell’s scree test in relation to Bartlett’s chi-square test and other observations on the number of factors problem. Multivariate Behavioral Research, 14, 283–300.

    Article  Google Scholar 

  • Howe, H. G. (1955). Some contributions to factor analysis. Oak Ridge, TH: Oak Ridge National Laboratory.

    Book  Google Scholar 

  • Hubbard, R. & Allen, S. J. (1987). An empirical comparison of alternate methods for principal components extractioa. Journal of Business Research, 15, 173–190.

    Article  Google Scholar 

  • Jackson, D.N. (1970). A sequential system for personality scale development. In CD. Spielberger (Ed.), Current Topics in Clinical and Community Psychology, (Vol. 2, pp. 61–96). New York: Academic Press.

    Google Scholar 

  • Jackson, D. N. (1971). The dynamics of structured personality tests. Psychological Review, 78, 229–248.

    Article  Google Scholar 

  • Jackson, D. N., & Chan, D. W. (1980). Maximum-likelihood estimation in common factor analysisA cautionary note. Psychological Bulletin, 88, 502–508.

    Article  Google Scholar 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20, 141–151.

    Article  Google Scholar 

  • Lautenschlager, G. J. (1989a). A comparison of alternatives to conducting Monte Carlo analyses for determining parallel analysis criteria. Multivariate Behavioral Research, 24, 365–395.

    Article  Google Scholar 

  • Lautenschlager, G. J. (1989b). PARANALTOK: A program for developing parallel analysis criteria. Applied Psychological Measurement, 13, 176.

    Article  Google Scholar 

  • Lautenschlager, G. J., Lance, C. E., & Flaherty, V. L. (1989). Parallel analysis criteria: Revised equations for estimating the latent roots of random data correlation matrices. Educational and Psychological Measurement, 49, 339–345.

    Article  Google Scholar 

  • Lee, H. B. & Comrey, A. L. (1979). Distortions in a commonly used factor analytic procedure. Multivariate Behavioral Research, 14, 301–321.

    Article  Google Scholar 

  • Linn, R. L. (1968). A Monte Carlo approach to the number of factors problem. Psychometrika, 33, 37–71.

    Article  PubMed  Google Scholar 

  • Loehlin, J.C. (1990). Component analysis versus common factor analysis: A case of disputed authorship. Multivariate Behavioral Research, 25, 29–31.

    Article  Google Scholar 

  • Longman, R. S., Cota, A. A., Holden, R. R., & Fekken, G. C. (1989a). A regressionequation for the parallel analysis criterion in principal components analysis: Mean and 95th percentile eigenvalues. Multivariate Behavioral Research, 24, 59–69.

    Article  Google Scholar 

  • Longman, R. S., Cota, A. A., Holden, R. R., & Fekken, G. C. (1989b). PAM: A double precision FORTRAN routine for the parallel analysis method in principal components analysis. Behavior Research Methods, Instruments, and Computers, 21, 477–480.

    Article  Google Scholar 

  • Longman, R. S., Cota, A. A., Holden, R. R., & Fekken, G. C. (1991). Implementing parallel analysis for principal components analysis: A comparison of six methods. Unpublished manuscript

    Google Scholar 

  • Longman, R. S., Holden, R. R., & Fekken, G. C. (1991). Anomalies in the Allen and Hubbard parallel analysis procedure. Applied Psychological Measurement, 15, 95–97.

    Article  Google Scholar 

  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84–99.

    Article  Google Scholar 

  • Marsh, H.W., Balla, J. R., & McDonald, R. P. (1988). Goodness of fit indices in confirmatory factor analysis: The effect of sample size. Psychological Bulletin, 103, 391–410.

    Article  Google Scholar 

  • McArdle, J.J. (1990). Principles versus principals of structural factor analysis. Multivariate Behavioral Research, 25, 81–87.

    Article  Google Scholar 

  • Montanelli, Jr., R. G. (1975). A computer program to generate sample correlation and covariance matrices. Educational and Psychological Measurement, 35, 195–197.

    Article  Google Scholar 

  • Montanelli, Jr., R. G. & Humphreys, L. G. (1976). Latent roots of random data correlation matrices with squared multiple correlations on the diagonal: A Monte Carlo study. Psychometrika, 41, 341–348.

    Article  Google Scholar 

  • Morrison, D. F. (1976). Multivariate Statistical Methods. (2nd ed). New York: McGraw-Hill

    Google Scholar 

  • Mulaik, S.A (1990). Blurring the distinctions between component analysisand common factor analysis. Multivariate Behavioral Research, 25, 53–59.

    Article  Google Scholar 

  • Odell, P. L. & Feiveson, A. H. (1966). A numerical procedure to generate a sample covariance matrix. Journal of the American Statistical Association, 61, 199–203.

    Article  Google Scholar 

  • Reddon, J. R (1985). MAPF and MAPS: Subroutines for the number of principal components. Applied Psychological Measurement, 9, 97.

    Article  Google Scholar 

  • Revelle, W. & Rocklin, T. (1979). Very simple structure: An alternative procedure for estimating the optimal number of interpretable factors. Multivariate Behavioral Research, 14, 403–414.

    Article  Google Scholar 

  • Rozeboom, W.W. (1990). Whatever happened to broad perspective? Multivariate Behavioral Research, 25, 61–65.

    Article  Google Scholar 

  • Schonemann, P. H. (1990). Facts, fictions, and common sense about factors and components. Multivariate Behavioral Research, 25, 47–51.

    Article  Google Scholar 

  • Steiger, J.H. (1990). Some additional thoughts on components, factors, and factor indeterminacy. Multivariate Behavioral Research, 25, 47–51.

    Article  Google Scholar 

  • Tucker, L. R., Koopman, R. F., & Linn, R. L. (1969). Evaluation of factor analytic research procedures by means of simulated correlation matrices. Psychometrika, 34, 421–459.

    Article  Google Scholar 

  • Tucker, L.R., & Lewis, C. (1973). A reliability coefficient for maximum likelihoodfactor analysis. Psychometrika, 38, 1–10.

    Article  Google Scholar 

  • Velicer, W. F. (1976). Determining the number of components from the matrix of partial correlations. Psychometrika, 31, 321–327.

    Article  Google Scholar 

  • Velicer, W. F. & Fava, J. L. (1987). An evaluation of the effects of variable sampling on component, image, and factor analysis. Multivariate Behavioral Research, 22, 193–209.

    Article  Google Scholar 

  • Velicer, W. F. & Fava, J. S. (1998). The effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231–251.

    Article  Google Scholar 

  • Velicer, W. F., Fava, J. L., Zwick, W. R., & Harrop, J. W. (1990). CAX (Computer program). Kingston, RI: University of Rhode Island

    Google Scholar 

  • Velicer, W. F., & Jackson, D. N. (1990a). Component analysis versus common factor analysis: Some issues in selecting an appropriate procedure. Multivariate Behavioral Research, 25, 1–28.

    Article  Google Scholar 

  • Velicer, W. F., & Jackson, D. N. (1990b). Component analysis versus common factor analysissome further observations. Multivariate Behavioral Research, 25, 97–114.

    Article  Google Scholar 

  • Velicer, W. F., Peacock, A. C., & Jackson, D. N. (1982). A comparison of component and factor patterns: A Monte Carlo approach. Multivariate Behavioral Research, 17, 371–388.

    Article  Google Scholar 

  • Widaman, K. F. (1990). Bias in pattern loadings represented by common factor analysis and component analysis. Multivariate Behavioral Research, 25, 89–95.

    Article  Google Scholar 

  • Wood, J.M., Tataryn, D. J., & Gorsuch, R. L. (1996). Effects of Under-and overextraction on principal axis factor analysis with varimax rotation. Psychological Methods, 1, 254–365.

    Article  Google Scholar 

  • Yeomans, K. A. & Golder, P. A. (1982). The Guttman-Kaiser criterion as a predictor of the number of common factors. The Statistician, 31, 221–229.

    Article  Google Scholar 

  • Zwick, W. R. & Velicer W. F. (1982). Factors influencing four rules for determining the number of components to retain. Multivariate Behavioral Research, 17, 253–269.

    Article  Google Scholar 

  • Zwick, W. R. & Velicer W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99, 432–442.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Velicer, W.F., Eaton, C.A., Fava, J.L. (2000). Construct Explication through Factor or Component Analysis: A Review and Evaluation of Alternative Procedures for Determining the Number of Factors or Components. In: Goffin, R.D., Helmes, E. (eds) Problems and Solutions in Human Assessment. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4397-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4397-8_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6978-3

  • Online ISBN: 978-1-4615-4397-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics