Skip to main content

Bromoperoxidases: Their Role in the Formation of HOBr and Bromoform by Seaweeds

  • Chapter

Abstract

The biogenic release of halogenated volatile organics from the ocean by natural sources and the biochemical pathways which lead to the production of these substances are not well understood. In this chapter, some of the marine sources are discussed and results are presented and reviewed on the role of vanadium bromoperoxidases from seaweeds in the formation of halomethanes. Further, it will be shown that most of the predominant seaweed species from the North Atlantic, which are also present in the Arctic Ocean, contain bromoperoxidases. In contrast, in members of the Desmarestiales collected in the Weddell Sea (Antarctic) which provide the bulk of the biomass of benthic seaweeds in the Antarctic waters, no bromoperoxidase activity could be detected. The distribu;tion of seaweeds with bromoperoxidase activity is correlated with the seawater concentration of bromoform.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barre, L.A., J.W. Bottenheim, R.C. Schnell, P.J. Crutzen, and R.A. Rasmussen. 1988. Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature 334:138–141.

    Article  Google Scholar 

  2. Barcelo, A.R., R. Munoz, and Sabater F. 1989. Subcellular location of basic and acidic soluble isoperoxidases in lupinus. Plant Sci. 63:31–38.

    Article  CAS  Google Scholar 

  3. Berg, W.W., P.D. Sperry, K.A. Rahn, and E.S. Gladney. 1983. Atmospheric bromine in the Arctic. J. Geophys. Res. 88:6719–6736.

    Article  CAS  Google Scholar 

  4. Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry, and R.J. Cicerone. 1984. Brominated organic species in the Arctic atmosphere. Geophys. Res. Lett. 11: 429–432.

    Article  CAS  Google Scholar 

  5. Bottenheim, J.W., L.A. Barrie, E. Atlas, L.E. Heidt, H. Niki, R.A. Rasmussen, and P.B. Shepson. 1990. Depletation of lower tropospheric ozone during Arctic Spring: The Polar Sunrise experiment 1988. J. Geophys. Res. 95(D11):18555–18568.

    Article  CAS  Google Scholar 

  6. Burreson, J.A., R.E. Moore, and P.P. Rohler. 1976. Volatile halogen compounds in the alga Asparagopsis taxiformis rhodophyta). J. Agric. Food Chem. 24:856–-861.

    Article  CAS  Google Scholar 

  7. Cicerone, R.J. 1981. Halogens in the atmosphere. Rev. Geophys. Space Phys. 19:123–139.

    Article  CAS  Google Scholar 

  8. Cicerone, R.J., L.E. Heidt, and W.H. Pollock. 1988. Measurements of atmospheric methyl bromide and bromoform. J. Geophys. Res. 93:3745–3749.

    Article  CAS  Google Scholar 

  9. Class, Th., R. Kohnle, and K. Ballschmiter. 1986. Chemistry of organic traces in air VII: bromo-and bromochloromethanes in air over the Atlantic Ocean. Chemo-sphere 4:429–436.

    Article  Google Scholar 

  10. De Boer, E., Y. Van Kooyk, M.G.M. Tromp, H. Plat, and R. Weyer. 1986. Bromoperoxidase from Ascophyllum nodosum: A novel class of enzymes containing vanadium as a prosthetic group. Biochim. Biophys. Acta 869:48–53.

    Article  Google Scholar 

  11. De Boer, E., M.G.M. Tromp, H. Plat, G.E. Krenn, and R. Weyer. 1986. Vana-dium (V) as an essential element for haloperoxidase activity in marine brown algae: purification and characterization of a vanadium (V) containing bromoperoxidase from Laminaria saccharina. Biochim. Biophys. Acta 872:104–115.

    Article  Google Scholar 

  12. De Boer, E., and R. Weyer. 1987. Some structural and kinetic aspects of vanadium bromoperoxidases from the marine brown alga Ascophyllum nodosum. Receuil. Tray. Chim. Pays-Bas 106:409.

    Google Scholar 

  13. De Boer, E., and R. Weyer. 1988. The reaction mechanism of the novel vanadium bromoperoxidase: a steady-state kinetic analysis. J. Biol. Chem. 263:12326–12332.

    Google Scholar 

  14. De Boer, E., H. Plat, M.G.M. Tromp, M.C.R. Franssen, H.C. Van Der Plas, E.M. Meijer, H.E. Schoemaker, and R. Weyer. 1987. Vanadium-containing bromoper-oxidase, an example of an oxido-reductase with high operational stability in aqueous and organic media. Biotechnol Bioeng. 30:607–610.

    Article  Google Scholar 

  15. Dyrssen, D., and E. Fogelqvist. 1981. Bromoform concentrations of the Arctic Ocean in the Svalbard area. Oceanol. Acta 4:313–317.

    CAS  Google Scholar 

  16. Everett, R.R., J.R. Kanofsky, and A. Butler. 1990. Mechanistic investigations of the novel non-heme vanadium bromoperoxidases: evidence for singlet oxygen for-mation J. Biol. Chem. 265:4908–4914.

    CAS  Google Scholar 

  17. Faulkner, D.J. 1984. Marine natural products: metabolites of marine algae and herbivorious marine molluscs. Natural Prod. Repts. 1:251–280.

    Article  CAS  Google Scholar 

  18. Fenical, W. 1979. Molecular aspects of halogen-based biosynthesis of marine natural products. Recent Adv. Phytochem. 13:219–239.

    CAS  Google Scholar 

  19. Fenical, W. 1982. Natural products chemistry in the marine environment. Science 215:923–928.

    Article  CAS  Google Scholar 

  20. Finlayson-Pitts, B.L., F.E. Livingstone, and H.N. Berko. 1990. Ozone destruction and bromine photochemistry at ground level in the Arctic spring. Nature 343: 622–625.

    Article  CAS  Google Scholar 

  21. Fogelqvist, E., B. Josefsson, and C. Roos. 1982. Halocarbons as tracer substances in studies of the distribution pattern of chlorinated waters in coastal areas. Environ. Sci. Technol. 16:479–482.

    Article  CAS  Google Scholar 

  22. Fogelqvist, E. 1985. Carbon tetrachloride, tetrachloroethane, 1,1,1,-trichloroethane and bromoform in Arctic sea water. J. Geophys. Res. 90:9181–9193.

    Article  CAS  Google Scholar 

  23. Fogelqvist, E., and M. Kryssel. 1988. The antropogenic and biogenic origin of low molecular weight halocarbons in a polluted fjord, the Idefjorden. Marine Pollut. Bull. 17:378–382.

    Article  Google Scholar 

  24. Gschwend, P.M., J.K. MacFarlane, and K.A. Newman. 1985. Volatile halogenated organic compounds released to sea water from temperate marine macroalgae. Science 227:1033–1036.

    Article  CAS  Google Scholar 

  25. Gschwend, P.M., and J.K. MacFarlane. 1986. Polybromomethanes, a year round study of their release to seawater from Ascophyllum nodosum and Fucus vesiculosis. In M.L. Sohn (ed.), Organic Marine Geochemistry, ACS Symposium Series 305, American Chemical Society, Washington DC, pp. 314–322.

    Chapter  Google Scholar 

  26. Hewson, W.D., and L.P. Hager. 1980. Bromoperoxidases and halogenated lipids in marine algae. J. Phycol. 16:340–345.

    Article  CAS  Google Scholar 

  27. Helz, G.R., and R.Y. Hsu. 1970. Volatile chloro-and bromocarbons in coastal waters. Limnol. Oceanogr. 23:859–869.

    Google Scholar 

  28. Itoh, N., Y. Izumi, and H. Yamada. 1986. Characterization of nonheme type bromoperoxidase in Corallina pilulifera. J. Biol. Chem. 261:5194–5200.

    CAS  Google Scholar 

  29. Jaworske, D.A., and G.R. Helz. 1985. Rapid consumption of bromine oxidants in river and estuarine waters. Environ. Sci. Technol. 19:1188–1191.

    Article  CAS  Google Scholar 

  30. Kjellman, F.R. 1883. The algae of the Arctic Sea. Kongl. Svenska Vetenskaps Akademiens Handlingar 20:1–61. Reprinted (1971) by Otto Koeltz Antiquariat Koenigstein-Taunus, B.R.D.

    Google Scholar 

  31. Krenn, B.E., H. Plat, and R. Wever. 1987. The bromoperoxidase from the red alga Ceramium rubrum also contains vanadium as a prosthetic group. Biochim. Biophys. Acta 912:287–291.

    Article  CAS  Google Scholar 

  32. Krenn, B.E., Y. Izumi, H. Yamada, and R. Wever. 1989. A comparison of different (vanadium) bromoperoxidases: the bromoperoxidase from Corallina pilulifera is also a vanadium enzyme. Biochim. Biophys. Acta 998:63–68.

    Article  CAS  Google Scholar 

  33. Krenn, B.E., M.G.M. Tromp, and R. Wever. 1989. The brown alga Ascophyllum nodosum contains two different vanadium bromoperoxidases. J. Biol. Chem. 264: 19287–19292.

    CAS  Google Scholar 

  34. Krysell, M. 1991. Bromoform in the Nansen Basin in the Arctic Ocean. Marine Chem. 33:187–197.

    Article  CAS  Google Scholar 

  35. Kylin, H. 1929. Über das Vorkommen vom Jodiden, Bromiden and Jodidoxydasen bei den Meeresalgen. Hoppe Seyler’s Zeit. Physiol. Chemie 186:50–84.

    Article  CAS  Google Scholar 

  36. Lovelock, J.E., R.J. Maggs, and R.J. Wade. 1973. Halogenated hydrocarbons in and over the Atlantic. Nature 241:194–196.

    Article  CAS  Google Scholar 

  37. Lovelock, J.E. 1975. Natural halocarbons in the air and in the sea. Nature 256: 193–194.

    Article  CAS  Google Scholar 

  38. Lüning, K. 1990. Seaweeds: Their Environment, Biogeography, and Ecophysiology, J. Wiley and Sons, New York, pp. 193–194.

    Google Scholar 

  39. Manthey, J.A., and L.P. Hager. 1989. Characterization of the catalytic properties of bromoperoxidase. Biochemistry 28:3052–3057.

    Article  CAS  Google Scholar 

  40. Moe, R.L., and P.C. Silva. 1977. Antarctic marine flora: Uniquely devoid of kelps. Science 196:1206–1208.

    Article  CAS  Google Scholar 

  41. Moore, R.E. 1977. Volatile compounds from marine algae. Acc. Chem. Res. 10:40–47.

    Article  CAS  Google Scholar 

  42. Neidleman, S.L., and J. Geigert. 1986. Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood Ltd., Chichester.

    Google Scholar 

  43. Palinek, B., O.C. Zafiriou, and F.M.M. Morel. 1981. Hydrogen peroxide production by a marine phytoplankter. Limnol Oceanogr. 33:1365–1369.

    Google Scholar 

  44. Pallaghy, C.K., J. Minchinton, G.T. Kraft, and R. Wetherby. 1983. Presence and distribution of bromine in Thysanochladioa densa (Solieriaceae, Gigertinales), a marine red alga from the Great Barrier Reef. J. Phycol. 19:204–208.

    Article  CAS  Google Scholar 

  45. Pedersén, M.E.E., G. Roomans, and A. v. Hofsten. 1981. Bromine in the cuticle of Polysiphonia nigrescens: Localization and content. J. Phycol. 17:105–108.

    Article  Google Scholar 

  46. Penkett, S.A., B.M.R. Jones, M.J. Rycrofft, and D.A. Simons. 1985. An interhemispheric comparison of the concentrations of bromine compounds in the atmosphere. Nature 318:550–553.

    Article  Google Scholar 

  47. Ramanathan, V., R.J. Cicerone, H.B. Singh, and J.T. Kiehl. 1985. Trace gas trends and their potential role in climate changes. J. Geophys. Res. 90:5547–5566.

    Article  CAS  Google Scholar 

  48. Sakshang, E., and H.R. Skjoldal. 1989. Life at the ice edge. AMBIO 1:60–67.

    Google Scholar 

  49. Sauvageau, C. 1926. Zur quelques algues floridées renformant du brome a l’état libre. Bull. Stat. Arch. 23:5–23.

    Google Scholar 

  50. Siuda, J.F., G.R. van Blaricom, P.D. Shaw, R.D. Johnson, H. White, L.P. Hager, and R.L. Rinehart. 1975. 1-iodo-3,3—dibromo—2-heptanone, 1,1,3,3,tetrabromo2 heptanone and related compounds from the red algae Bonnemaisonia hamifera. J. Amer. Chem. Soc. 97:937–939.

    Article  CAS  Google Scholar 

  51. Soedjak, H.S., and A. Butler. 1990. Characterization of vanadium bromoperoxidase from Macrocystis and Fucus: Reactivity of vanadium bromoperoxidase towards acyl and alkyl peroxides and bromination of amines. Biochemistry 29:7974–7981.

    CAS  Google Scholar 

  52. Sturges, W.T., and L.A. Barrie. 1988. Chlorine, bromine and iodine in Arctic aerosols. Atmos. Environ. 22:1179–1194.

    Article  CAS  Google Scholar 

  53. Svendson, P. 1959. The algal vegetation of Spitsbergen. Norsk Polar Institutt Shifter 116:3–52.

    Google Scholar 

  54. Theiler, R., J.C. Cook, L.P. Hager, and J.F. Siuda. 1978. Halohydrocarbon synthesis by bromoperoxidase. Science 202:1094–1096.

    Article  CAS  Google Scholar 

  55. Vilter, H., K.-W. Glombitza, and A. Grawe. 1983. Peroxidases from Phaeophyceae I: extraction and detection of the peroxidases. Bot. Marine 26:331–340.

    CAS  Google Scholar 

  56. Vilter, H. 1984. Peroxidases from Phaeophyceae: a vanadium (V) dependent per-oxidase from Ascophyllum nodosum. Phytochemistry 23:1387–1390.

    Article  CAS  Google Scholar 

  57. Vilter, H. 1983. Peroxidases from Phaeophyceae IV. Fractionation and location of peroxidase isoenzymes in Ascophyllum nodosum (L.) Le Jol. Bot. Marine 26: 451–455.

    Google Scholar 

  58. Waaland, R.J. 1981. Commercial utilization. In C.S. Lobban and M.J. Wynne (eds.), The Biology of Seaweeds, University of California Press, Berkeley and Los Angeles, pp. 726–741.

    Google Scholar 

  59. Wever, R., H. Plat, and E. De Boer. 1985. Isolation procedure and some properties of the bromoperoxidase from the seaweed Ascophyllum nodosum. Biochim. Biophys. Acta 830:181–186.

    Article  CAS  Google Scholar 

  60. Wever, R. 1988. Ozone destruction by algae in the Arctic atmosphere. Nature 335:501.

    Article  Google Scholar 

  61. Wever, R., G. Olafsson, B.E. Krenn, and M.G.M. Tromp. 1988. Ozone destruction and bromoform production in the Arctic: pieces of a puzzle. Abstr. 32nd IUPAC Congress, No. 210, Stockholm, Sweden.

    Google Scholar 

  62. Wever, R., and B.E. Krenn. 1990. Vanadium haloperoxidases. In N.D. Chasteen (ed.), Vanadium in Biological Systems, Kluwer Academic Publishers, Amsterdam, pp. 81–97.

    Chapter  Google Scholar 

  63. Wever, R., and K. Kustin. 1990. Vanadium: A biologically relevant element. Adv. Inorg. Chem. 35:81–115.

    Article  CAS  Google Scholar 

  64. Wever, R., M.G.M. Tromp, B.E. Krenn, A. Marjani, and M. Van Tol. 1991. Brominating activity of the seaweed A. nodosum: Impact on the biosphere. Environ. Sci. Technol. 25:446–449.

    Article  CAS  Google Scholar 

  65. Wever, R. 1991. Formation of halogenated gases by natural sources. In J.E. Rogers and W.B. Whitman (eds.), Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, American Society for Microbiology, Washington DC, pp. 277–285.

    Google Scholar 

  66. Wolk, C.P. 1968. Role of bromine in the formation of refractile inclusions of the vesicle cells of the Bonnemaisoniaceae (Rhodophyta). Planta 78:371–378.

    Article  CAS  Google Scholar 

  67. Wuosmaa, A.M., and L.P. Hager. 1990. Methyl chloride transferase: a carbocation route for biosynthesis of halometabolites. Science 249:160–162.

    Article  CAS  Google Scholar 

  68. Yu, H., and J.W. Whittaker. 1989. Vanadate activation of bromoperoxidase from Corallins officinales. Biochem. Biophys. Res. Commun. 160:87–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wever, R., Tromp, M.G.M., van Schijndel, J.W.P.M., Vollenbroek, E., Olsen, R.L., Fogelqvist, E. (1993). Bromoperoxidases: Their Role in the Formation of HOBr and Bromoform by Seaweeds. In: Oremland, R.S. (eds) Biogeochemistry of Global Change. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2812-8_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2812-8_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6215-9

  • Online ISBN: 978-1-4615-2812-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics