Skip to main content

Resolution of Near Infrared Time-of-Flight Brain Oxygenation Imaging

  • Chapter
Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.F. Jöbsis, Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters, Science 198:1264–6 (1975).

    Article  Google Scholar 

  2. P.W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J.I. Amman, Intracerebral penetration of infrared light, J. Neurosurg. 76:315–8 (1992).

    Article  PubMed  CAS  Google Scholar 

  3. C.D. Kurth, presented at NIH workshop on near-infrared spectroscopy, D. Hirtz, Chairperson, April 1992.

    Google Scholar 

  4. B. Chance, Comparison of time-resolved and -unresolved measurements of deoxyhemoglobm in brain, Proc. Natl. Acad. Sci. 85:4971–5 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. D.T. Delpy, M. Cope, P. van der Zee, S.R. Arridgge, S. Wray, and J.S. Wyatt, Estimation of optical pathlength through tissue from direct time of flight measurement, Pays. Med. Biol. 33:1433–42 (1988).

    Article  CAS  Google Scholar 

  6. L.O. Svaasand and R. Ellingsen, Optical properties of human brain, J. Cereb. Blood Flow Metabol. 3:293–9 (1983).

    Google Scholar 

  7. J.C. Hebden and RA. Kruger, Transillummation imaging performance: a time-of-flight imaging system, Med. Phys. 17:351–6 (1990).

    Article  PubMed  CAS  Google Scholar 

  8. J.S. Wyatt, et al., Measurement of optical pathlength for cerebral near infrared spectroscopy in newborn infants, Dev. Neurosci. 12:140–4 (1990).

    Article  PubMed  CAS  Google Scholar 

  9. D.A. Benaron, et al., Non-invasive estimation of cerebral oxygenation and oxygen consumption using phase-shift spec-trophotometry, Proc. IEEE Eng. Med. Biol. 12,:2004–7 (1990

    Google Scholar 

  10. D.A. Benaron, et al., Optical path length of 754nm and 816nm light emitted into the heads of infants, Proc. IEEE Eng. Med Biol. 12:1117–9 (1990).

    Google Scholar 

  11. B. Drexler, J.L. Davis, and G. Schofield, Diaphanography in the diagnosis of breast cancer, Radiology 157:41–4 (1985).

    PubMed  CAS  Google Scholar 

  12. V. Marshall, D. C. Williams, and K.D. Smith, Diaphanography as a means of detecting breast cancer, Radiology 150:339–43 (1984).

    PubMed  CAS  Google Scholar 

  13. G.A. Navarro and A.E. Profio, Contrast in diaphanography of the breasts, Med Phys. 15:181–87 (1988).

    Article  PubMed  CAS  Google Scholar 

  14. D.A. Benaron, M.A. Lenox, and D.K. Stevenson, Two-D and three-D images of thick tissue using time-constrained time-of-flight and absorbance (tc-TOFA) spectrophotometry, SPIE 164:35–45 (1992).

    Article  Google Scholar 

  15. D.A. Benaron, unpublished.

    Google Scholar 

  16. D.A. Benaron, Noninvasive measurement and imaging of tissue structure and oxygenation using time-of-flight absorbance (TOFA) spectroscopy, Proc. IEEE Eng. Med. Biol. 14:2402–4 (1992)

    Google Scholar 

  17. G.A. Millikan, The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man, Rev. Sci. Instrum. 13:434–44(1942).

    Article  CAS  Google Scholar 

  18. D.A. Benaron, W.E. Bentz, A. Anagno, and D.K. Stevenson, Noninvasive methods for estimating in vivo oxygenation, Clinical Pediatrics 31:258–73 (1992).

    Article  PubMed  CAS  Google Scholar 

  19. These proteins include: hemoglobin, myoglobin, mitochondria] cytochrome aa3, cytosolic cytochrome oxidase, and other copper-or iron-containing proteins.

    Google Scholar 

  20. M. Ferran, Q. Wei, L. Carraresi, R.A. DeBlasi, and G. Zaccanti, Time-resolved spectroscopy of human forearm, J. Photochem. Photobiol.in press.

    Google Scholar 

  21. Y. Kakihana and M. Tamura Near-infrared optical monitoring of cardiac oxygen sufficiency through thoracic wall without open-chest surgery,.PIE 1431:314–20 (1991).

    Google Scholar 

  22. C.M. Alexander, L.E. Teller and J.B. Gross, Principles of pulse oximetry: theoretical and practical considerations, An-esih. Analg. 68:368–76 (l989).

    CAS  Google Scholar 

  23. P.W. McCormick et al., Noninvasive cerebral optical spectroscopy for monitoring cerebral oxygen delivery and hemodynamics drit. Care. Med 19:89–97 (1991).

    Article  CAS  Google Scholar 

  24. J.E. Brazy, D.V. Lewis, M.G. Mittick, and F.F. Jöbsis, Monitoring of cerebral oxygenation in the intensive care nurs-ery, Adv. Exp. Med Biol. 191:843–7 (1986).

    Article  Google Scholar 

  25. J.S. Wyatt, AD. Edwards, D. Azzopardi, and E.O.R. Reynolds, Magnetic reasonance and near infrared spectroscopy for investigation of perinatal hypoxic-ischaemic brain injury. Arch. Dis. Child. 1989:64:953–63.

    Article  PubMed  CAS  Google Scholar 

  26. J.S. Wyatt, et al., Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy, J. Appl. Physiol. 68:1086–91 (1990).

    PubMed  CAS  Google Scholar 

  27. A.D. Edwards et al., Effects of indomethacin on cerebral haemodynamies in very preteen infants, Lancet 335:1491–95 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. C.D. Kurth, J.M. Steven, S.C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates Anesthesiology,in press.

    Google Scholar 

  29. P.W. McCormick, M. Stewart, M.G. Goetting, and G. Balakrishnan, Regional cerebrovascular oxygen saturation measured by optical spectroscopy in humans, Stroke 22:596–602 (1991).

    Article  PubMed  CAS  Google Scholar 

  30. J.E. Brazy, D. V. Lewis, M.H. Mitmck, and F.F Jöbsis Noninvasive monitoring of cerebral oxygenation in newborn infants by near-infrared transillumination, Pediatrics 75:217–25 (1985).

    PubMed  CAS  Google Scholar 

  31. A.D. Edwards, et al, Cotside measurement of cerebral blood flow in ill preterm infants by near-infrared spectroscopy, Lancet ii;770–1 (1988.)

    Google Scholar 

  32. A. Edwards, et al., Effects of indomethacin on cerebral haemodynan ics in very preterm infants, Lancet 335:1491–5 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. D.T. Delpy, et al., Quantitation of pathlength in optical spectroscopy, Adv. Exp. Med. Biol. 248:41–6 (1989).

    Article  PubMed  CAS  Google Scholar 

  34. B. Chance, Early detection of brain ‘schema and hemorrhage by optical methods SPIE 1641:162–9 (1992).

    Article  Google Scholar 

  35. P. Van der Zee, et al., Experimentally measured optical pathlengths for the adult head, calf, and forearm and the head tod of the newborn infant as a function of inter ope spacing. Adv. Exp. Med. Biol. (in press).

    Google Scholar 

  36. D.T. Delpy. presented at the NIH Workshop NIR Spectroscopy, D. Hintz, Chairperson, ME, April 1992.

    Google Scholar 

  37. M.S. Patterson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties, Appl Optics 28:2331–6 (1989).

    Article  CAS  Google Scholar 

  38. R.F. Bonne, Model for photon migration in turbid biological media, J. Opt. Soc. Am. 4:423–32 (1987).

    Article  Google Scholar 

  39. P. van der Zee and D.T. Delpy Computed point spread functions for light in tissue using a measured volume scatter-ing function, Adv. Exp. Med Biol. 1988; 22:191–7.

    Article  Google Scholar 

  40. L. Wang, P.P. Ho, C. Liu, G. Zhang, and R.R. Alfano, Ballistic 2-D imaging through scattering walls using an ultra-fast optical Kerr gate, Science 253:769–71 (1991)

    Article  PubMed  CAS  Google Scholar 

  41. H.H. Gilgen, R.P. Novak, and R.P. Salathe,J. Lightwave Tech., 7:1225 (1989).

    Article  CAS  Google Scholar 

  42. A.F. Fercher, K. Mengedoht, and W. Werner, Opt. Lett.,13:186 (1988).

    Article  PubMed  CAS  Google Scholar 

  43. R.C. Youngquist, S. Carr, and D.E.N. Davies, Opt. Lett., 12:158 (1987).

    Article  PubMed  CAS  Google Scholar 

  44. D. Huang, et al. Optical coherence tomography, Science 254: 1178–81 (1991).

    Article  PubMed  CAS  Google Scholar 

  45. Essenpreis, et al., Spectral dependence of temporal point spread functions in human tissues, Appl. Optics, in press.

    Google Scholar 

  46. M. Cope P. van der Zee, M. Essenpreis, S.R. Arridge, D.T. Delpy, Data analysis methods for near infrared spectroscopy of tissue: problems in determining the relative cytochrome aa3 concentration. SPIE 1431:251–62. (1991).

    Article  CAS  Google Scholar 

  47. NIH Workshop on Near-Infrared Spectroscopy, D. Hertz, chairperson. National Institute of Neurological Diseases and Stroke National Institutes of Health, Chevy Chase, Maryland, April 1992.

    Google Scholar 

  48. G.N. Stroke, Computerized transverse axial scanning (tomography), Br. J. Radiol. 46:1016–47 (1973).

    Article  Google Scholar 

  49. R. Damadian, M. Goldsmith, and L. Minkoff, Physiol. Chem. Phys. 9:97 (1977).

    PubMed  CAS  Google Scholar 

  50. J.J. Wild and J.M. Reid, Application of echo-ranging techniques to the determination of structure of biological tissues, Science 115:226–30 (1952

    Article  PubMed  CAS  Google Scholar 

  51. G.D. Hutchins et al., A one-dimensional multigated time-of-flight acquisition system, IEEE Trans. Nucl. Sci. NS32:835–42 (1985).

    Google Scholar 

  52. A.M. Gorbach and RN. Tsicalov, Visualization of processes in the brain cortex: a new method, Proc. IEEE Eng. Med. Biol. Soc. 12:1245–6 (1990).

    Google Scholar 

  53. J.C. Newlee D.G. Gisser, and D. Isaacson, Proc. IEEE Trans. Biomed Eng. 35, 828 (1988).

    Article  Google Scholar 

  54. B. Chance, Early detection of brain ischemia and hemorrhage by optical methods, SPIE 1641:162–9 (1992).

    Article  Google Scholar 

  55. J.R. Singer, F.A. Grünbaum, P. Kohn, and J.P. Zubelli, Image reconstruction of the interior of bodies that diffuse radiation, Science 248:990–3 (1990).

    Article  PubMed  CAS  Google Scholar 

  56. R. Araki and I. Nashimoto, Near-infrared imaging in vivo: imaging of Hb oxygenation in living tissues, SPIE 1431:321–32 (1991).

    Article  Google Scholar 

  57. B.C. Wilson, M.S. Patterson, S.T. Flock, and D.R. Wyman, in: Photon Migration in Tissue, B. Chance, Ed. (Plenum, New York, 1989).

    Google Scholar 

  58. S.T. Flock, B.C. Wilson, and M.S. Patterson, Total attenuation coefficients and scattering phase functions of tissues and phanton materials at 633nm Med. Phys. 14: 835–41 (1987).

    Article  PubMed  CAS  Google Scholar 

  59. M.S. Patterson, B. Chance, and B.C. Wilson, Time-resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties, Appl Opt. 28:2331–6 (1989).

    Article  PubMed  CAS  Google Scholar 

  60. K.M. Yoo and R.R. Alfano, Time-resolved coherent and incoherent components of forward light scattering in random media. Opt. Lett. 15:320–22 (1990).

    Article  CAS  Google Scholar 

  61. M.A. Duguay and A.T. Mattick, Ultrahigh speed photography of picosecond light pulses and echoes,App1. Opt. 10: 2162–70 1971).

    Article  CAS  Google Scholar 

  62. F. H. Schiereth, J. A. Fossaceca, A. D. Keckler, and R. L. Barbour, Imaging in diffusing media with a neural net formulation: a problem in large scale computation, SPIE 1641:46–57 (1992).

    Article  Google Scholar 

  63. R.L. Barbour et al., Imaging of diffusing media by a progressive iterative backprojection method using time-domain data, SPIE 1641:21–34 (1991).

    Article  Google Scholar 

  64. J.C. Hebden, R.A. Kruger, and K.S. Wong, Time resolved imaging through a highly scattering medium, Appl. Optics 30:788–94(1991).

    Article  CAS  Google Scholar 

  65. K.M. Yoo F Liu and R.R. Alfano, Imaging through a scattering wall using absorption, Opt. Lett. 16:1068–70 (1991).

    Article  PubMed  CAS  Google Scholar 

  66. L. Wang, Y. Liu, P.P. Ho, and R. R. Alfano, Ballistic imaging of biomedical samples using picosecond optical kerr gate, SPIE 1431:97–101 (1991).

    Article  Google Scholar 

  67. S. Andersson-Engels, R. Berg, and S. Svanberg, Time-resolved transillumination for medical diagnostics, Opt. Lett. 15:1179–81 (1990).

    Article  PubMed  CAS  Google Scholar 

  68. R.R. Alfano, paper presented at the Science/Innovation 1992 conference, sponsored by the American Association for the Advancement of Science, San Francisco, CA, July 1992.

    Google Scholar 

  69. E. Gratton, personal communication.

    Google Scholar 

  70. J. R. Lakowicz, G. Laczko, H. Cherek, E. Grafton, and M. Limkeman Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data,Biopphys. J. 46:463–77 (1984).

    Article  CAS  Google Scholar 

  71. E.M. Sevick, presented at the NIH workshop on near-infrared spectroscopy, Chevy Chase, MD, April 1992.

    Google Scholar 

  72. B. Chance, presented at the NIH Workshop on Near-Infrared Spectroscopy, Chevy Chase, MD, April 1992.

    Google Scholar 

  73. F. Fishkin, E Grafton, M.J. vandeVen, and W.W. Mantulin, Diffusion of intensity modulated near-infrared light in turbid media SPIE 1431:122–35(1991).

    Article  Google Scholar 

  74. A. Knüttef J. M. Schmitt and J. R. Knutsen App. Opt., in press (1992).

    Google Scholar 

  75. S. R. Arridge, P. van der Schmitt, M. Cope, and D. T. Delpy, Reconstruction methods of infrared absorption imaging, SPIE 1431:204–15 (1991).

    Article  Google Scholar 

  76. D. T. Delpy, presented at the NIH Workshop on Near-Infrared Spectroscopy, Chevy Chase, MD, April 1992.

    Google Scholar 

  77. R.R. Alfano, personal communication.

    Google Scholar 

  78. P.J. Placek, K.G. Keppel, S.M. Taffel, and T.L. Liss, Electronic fetal monitoring in relation to cesarean delivery, for live births and stillbirths in the US, 1980, Public Heal. Rep. 99:173–83 (1980).

    Google Scholar 

  79. K.K. Shy, et al., Effects of electronic fetal-heart-rate monitoring, as compared with periodic auscultation, on the neurologic development of premature infants, New. Engl. J. Med. 322:588–93 (1990).

    Article  PubMed  CAS  Google Scholar 

  80. DA. Luthy, et al., A randomized trial of electronic fetal monitoring in preterm labor, Obstet. Gynecol 69:687–95 (1987).

    PubMed  CAS  Google Scholar 

  81. P.W. McCormick, M. Stewart, G. Lewis, M. Dujovny, and J.L. Ausman, Intercerbral penetration of light, J. Neurosurg. 76:315–8 (1992).

    Article  PubMed  CAS  Google Scholar 

  82. C.D. Kurth, J.M. Steven, DA. Benaron, B. Chance, Near-infrared monitoring of the cerebral circulation, J. Clin. Mon., in press.

    Google Scholar 

  83. I. Oda et al., Noninvasive hemoglobin oxygenation monitor and computed tomography by NIR spectrophotometry, SPIE 1431:284–93 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Benaron, D.A., Stevenson, D.K. (1994). Resolution of Near Infrared Time-of-Flight Brain Oxygenation Imaging. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_81

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_81

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics