Skip to main content

Brain–Computer Interfaces

  • Chapter
  • First Online:

Abstract

Brain–computer interfaces are a new technology that could help to restore useful function to people severely disabled by a wide variety of devastating neuromuscular disorders and to enhance functions in healthy individuals. The first demonstrations of brain–computer interface (BCI) technology occurred in the 1960s when Grey Walter used the scalp-recorded electroencephalogram (EEG) to control a slide projector in 1964 [1] and when Eberhard Fetz taught monkeys to control a meter needle (and thereby earn food rewards) by changing the firing rate of a single cortical neuron [2, 3]. In the 1970s, Jacques Vidal developed a system that used the scalp-recorded visual evoked potential (VEP) over the visual cortex to determine the eye-gaze direction (i.e., the visual fixation point) in humans, and thus to determine the direction in which a person wanted to move a computer cursor [4, 5]. At that time, Vidal coined the term “brain–computer interface.” Since then and into the early 1990s, BCI research studies continued to appear only every few years. In 1980, Elbert et al. showed that people could learn to control slow cortical potentials (SCPs) in scalp-recorded EEG activity and could use that control to adjust the vertical position of a rocket image moving across a TV screen [6]. In 1988, Farwell and Donchin [7] reported that people could use scalp-recorded P300 event-related potentials (ERPs) to spell words on a computer screen. Wolpaw and his colleagues trained people to control the amplitude of mu and beta rhythms (i.e., sensorimotor rhythms) in the EEG recorded over the sensorimotor cortex and showed that the subjects could use this control to move a computer cursor rapidly and accurately in one or two dimensions [8, 9].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Graimann B, Allison B, Pfurtscheller G (2010) Brain-computer interfaces: a gentle introduction. In: Graimann B, Allison B, Pfurtscheller G (eds) Brain-computer interfaces. Springer, Berlin, pp 1–27

    Chapter  Google Scholar 

  2. Fetz EE (1969) Operant conditioning of cortical unit activity. Science 163:955–958

    Article  Google Scholar 

  3. Fetz EE, Finocchio DV (1971) Operant conditioning of specific patterns of neural and muscular activity. Science 174:431–435

    Article  Google Scholar 

  4. Vidal JJ (1973) Towards direct brain–computer communication. Annu Rev Biophys Bioeng 2:157–180

    Article  Google Scholar 

  5. Vidal JJ (1977) Real-time detection of brain events in EEG. IEEE Proc 65:633–664

    Article  Google Scholar 

  6. Elbert T, Rockstroh B, Lutzenberger W, Birbaumer N (1980) Biofeedback of slow cortical potentials. I. Electroencephalogr Clin Neurophysiol 48:293–301

    Article  Google Scholar 

  7. Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalogr Clin Neurophysiol 70(6):510–523

    Article  Google Scholar 

  8. Wolpaw JR, McFarland DJ, Neat GW, Forneris CA (1991) An EEG-based brain-computer interface for cursor control. Electroencephalogr Clin Neurophysiol 78:252–259

    Article  Google Scholar 

  9. Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based brain-computer communication. Electroencephalogr Clin Neurophysiol 90:444–449

    Article  Google Scholar 

  10. Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113(6):767–791

    Article  Google Scholar 

  11. Vallabhaneni A, Wang T, He B (2005) Brain computer interface. In: He B (ed) Neural engineering. Kluwer Academic, Plenum, New York, pp 85–122

    Google Scholar 

  12. Wolpaw JR, Wolpaw EW (eds) (2012) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford

    Google Scholar 

  13. Wolpaw JR, Wolpaw EW (2012) Brain-computer interfaces: something new under the sun. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 3–12

    Chapter  Google Scholar 

  14. Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain responses. J Microcomput Appl 15:31–45

    Article  Google Scholar 

  15. Graimann B, Allison B, Pfurtscheller G (eds) (2010b) Brain-computer interfaces. Springer, Berlin, p 21 et passim

    Google Scholar 

  16. McCrea DA, Ryback IA (2008) Organization of mammalian locomotor rhythm and pattern generation. Brain Res Rev 57:134–146

    Article  Google Scholar 

  17. Ijspeert AJ (2008) Central pattern generators for locomotion control in animals and robots: a review. Neural Netw 21:642–653

    Article  Google Scholar 

  18. Guertin PA, Steuer I (2009) Key central pattern generators of the spinal cord. J Neurosci Res 87:2399–2405

    Article  Google Scholar 

  19. Carroll RC, Zukin RS (2002) NMDA-receptor trafficking and targeting: implications for synaptic transmission and plasticity. Trends Neurosci 25(11):571–577

    Article  Google Scholar 

  20. Gaiarsa JL, Caillard O, Ben-Ari Y (2002) Long-term plasticity at GABA-ergic and glycinergic synapses: mechanisms and functional significance. Trends Neurosci 25(11):564–570

    Article  Google Scholar 

  21. Vaynman S, Gomez-Pinilla F (2005) License to run: exercise impacts functional plasticity in the intact and injured central nervous system by using neurotrophins. Neurorehabil Neural Repair 19(4):283–295

    Article  Google Scholar 

  22. Saneyoshi T, Fortin DA, Soderling TR (2010) Regulation of spine and synapse formation by activity-dependent intracellular signaling pathways. Curr Opin Neurobiol 20(1):108–115

    Article  Google Scholar 

  23. Wolpaw JR (2010) What can the spinal cord teach us about learning and memory? Neuroscientist 16(5):532–549

    Article  Google Scholar 

  24. Yuan H, Liu T, Szarkowski R, Rios C, Ashe J, He B (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49:2596–2606

    Article  Google Scholar 

  25. Yuan H, Perdoni C, He B (2010) Relationship between speed and EEG activity during imagined and executed hand movements. J Neural Eng 7:26001

    Article  Google Scholar 

  26. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586

    Article  Google Scholar 

  27. Kipke DR, Shain W, Buzsáki G, Fetz E, Henderson JM, Hetke JF, Schalk G (2008) Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J Neurosci 28(46):11830–8

    Article  Google Scholar 

  28. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    Article  Google Scholar 

  29. Kennedy PR (1989) The cone electrode: a long-term electrode that records from neurites grown onto its recording surface. J Neurosci Methods 29:181–193

    Article  Google Scholar 

  30. Donoghue JP, Sanes JN (1994) Motor areas of the cerebral cortex. J Clin Neurophysiol 11:382–396

    Google Scholar 

  31. Taylor D, Tillery S, Schwartz A (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296:1829–1832

    Article  Google Scholar 

  32. Nicolelis MA, Chapin JK (2002) Controlling robots with the mind. Sci Am 287:46–53

    Article  Google Scholar 

  33. Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453:1098–1101

    Article  Google Scholar 

  34. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442:164–171

    Article  Google Scholar 

  35. Truccolo W, Friehs GM, Donoghue JP, Hochberg LR (2008) Primary motor cortex tuning to intended movement kinematics in humans with tetraplegia. J Neurosci 28:1163–1178

    Article  Google Scholar 

  36. Schwartz AB, Cui XT, Weber DJ, Moran DW (2006) Brain-controlled interfaces: movement restoration with neural prosthetics. Neuron 52(1):205–20

    Article  Google Scholar 

  37. Reina GA, Moran DW, Schwartz AB (2001) On the relationship between joint angular velocity and motor cortical discharge during reaching. J Neurophysiol 85(6):2576–89

    Google Scholar 

  38. Wang W, Chan SS, Heldman DA, Moran DW (2010) Motor cortical representation of hand translation and rotation during reaching. J Neurosci 30:958–962

    Article  Google Scholar 

  39. Shin HC, Aggawal V, Acharya S, Schieber MH, Thakor NV (2010) Neural decoding of finger movements using Skellam based maximum likelihood decoding. IEEE Trans Biomed Eng 57:754–760

    Article  Google Scholar 

  40. Jarosiewicz B, Chase SM, Fraser GW, Velliste M, Kass RE, Schwartz AB (2008) Functional network reorganization during learning in a brain-computer interface paradigm. Proc Natl Acad Sci USA 105(49):19486–91

    Article  Google Scholar 

  41. Simeral JD, Kim SP, Black MJ, Donoghue JP, Hochberg LR (2011) Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array. J Neural Eng 8(2):025027

    Article  Google Scholar 

  42. He B, Yang L, Wilke C, Yuan H (2011) Electrophysiological imaging of brain activity and connectivity-challenges and opportunities. IEEE Trans Biomed Eng 58(7):1918–31

    Article  Google Scholar 

  43. Manning JR, Jacobs J, Fried I, Kahana MJ (2009) Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J Neurosci 29(43):13613–20

    Article  Google Scholar 

  44. Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain–computer interface using electrocorticographic signals in humans. J Neural Eng 1:63–71

    Article  Google Scholar 

  45. Schalk G et al (2007) Decoding two-dimensional movement trajectories using electrocorticographic signals in humans. J Neural Eng 4:264–275

    Article  Google Scholar 

  46. Schalk G et al (2008) Two-dimensional movement control using electrocorticographic signals in humans. J Neural Eng 5:75–84

    Article  Google Scholar 

  47. Leuthardt EC, Gaona C, Sharma M, Szrama N, Roland J, Freudenberg Z, Solis J, Breshears J, Schalk G (2011) Using the electrocorticographic speech network to control a brain-computer interface in humans. J Neural Eng 8(3):036004

    Article  Google Scholar 

  48. Zhang P, Jamison K, Engel S, He B, He S (2011) Binocular rivalry requires visual attention. Neuron 71:362–369

    Article  Google Scholar 

  49. Michel C, He B (2011) EEG mapping and source imaging. In: Schomer D, Lopes da Silva F (eds) Niedermeyer’s electroencephalography, Chap 55, 6th edn. Wolters Kluwer & Lippincott Williams & Wilkins, Philadelphia, pp 1179–1202

    Google Scholar 

  50. Malmivuo J, Plonsey R (1995) Bioelectromagnetism - principles and applications of bioelectric and biomagnetic fields. Oxford University Press, New York

    Book  Google Scholar 

  51. Wolpaw JR, McFarland DJ (2004) Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc Natl Acad Sci USA 101:17849–17854

    Article  Google Scholar 

  52. Doud AJ, Lucas JP, Pisansky MT, He B (2011) Continuous three-dimensional control of a virtual helicopter using a motor imagery based brain-computer interface. PLoS One 6(10):e26322. doi:10.1371/journal.pone.0026322

    Article  Google Scholar 

  53. McFarland DJ, Sarnacki WA, Wolpaw JR (2010) Electroencephalographic (EEG) control of three-dimensional movement. J Neural Eng 7:036007

    Article  Google Scholar 

  54. Royer AS, Doud AJ, Rose ML, He B (2010) EEG control of a virtual helicopter in 3-dimensional space using intelligent control strategies. IEEE Trans Neural Syst Rehabil Eng 18(6):581–9

    Article  Google Scholar 

  55. He B (ed) (2004) Modeling and imaging of bioelectrical activity: principle and applications. Kluwer Academic, Plenum, New York

    Google Scholar 

  56. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Book  Google Scholar 

  57. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2010) Reconstructing three-dimensional hand movements from noninvasive electroencephalographic signals. J Neurosci 30(9):3432–7

    Article  Google Scholar 

  58. Bradberry TJ, Gentili RJ, Contreras-Vidal JL (2011) Fast attainment of computer cursor control with noninvasively acquired brain signals. J Neural Eng 8(3):036010

    Article  Google Scholar 

  59. Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C (2008) Hand movement direction decoded from MEG and EEG. J Neurosci 28:1000–1008

    Article  Google Scholar 

  60. Moran DW, Schwartz AB (1999) Motor cortical representation of speed and direction during reaching. J Neurophysiol 82:2676–2692

    Google Scholar 

  61. Qin L, Ding L, He B (2004) Motor imagery classification by means of source analysis for brain-computer interface applications. J Neural Eng 1:135–141

    Article  Google Scholar 

  62. Kamousi B, Liu Z, He B (2005) Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis. IEEE Trans Neural Syst Rehabil Eng 13:166–171

    Article  Google Scholar 

  63. Kamousi B, Amini AN, He B (2007) Classification of motor imagery by means of cortical current density estimation and von neumann entropy. J Neural Eng 4:17–25

    Article  Google Scholar 

  64. Cincotti F, Mattia D, Aloise F, Bufalari S, Astolfi L, Vico Fallani F, Tocci A, Bianchi L, Marciani MG, Gao S, Millan J, Babiloni F (2008) High-resolution EEG techniques for brain–computer interface applications. J Neurosci Methods 167:31–42

    Article  Google Scholar 

  65. Noirhomme Q, Kitney RI, Macq B (2008) Single-trial EEG source reconstruction for brain–computer interface. IEEE Trans Biomed Eng 55:1592–1601

    Article  Google Scholar 

  66. Yuan H, Doud A, Gururajan A, He B (2008) Cortical imaging of event-related (de)synchronization during online control of brain-computer interface using minimum-norm estimates in frequency domain. IEEE Trans Neural Syst Rehabil Eng 16:425–431

    Article  Google Scholar 

  67. Mellinger J, Schalk G, Braun C, Preissl H, Rosenstiel W, Birbaumer N, Kübler A (2007) An MEG-based brain-computer interface (BCI). Neuroimage 36(3):581–93

    Article  Google Scholar 

  68. Van Der Werf J, Jensen O, Fries P, Medendorp WP (2010) Neuronal synchronization in human posterior parietal cortex during reach planning. J Neurosci 30(4):1402–12

    Article  Google Scholar 

  69. Darvas F, Scherer R, Ojemann JG, Rao RP, Miller KJ, Sorensen LB (2010) High gamma mapping using EEG. Neuroimage 49(1):930–8

    Article  Google Scholar 

  70. Hämäläinen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography – theory, instrumetation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65:413–497

    Article  Google Scholar 

  71. Battapady H, Lin P, Holroyd T, Hallett M, Chen X, Fei DY, Bai O (2009) Spatial detection of multiple movement intentions from SAM-filtered single-trial MEG signals. Clin Neurophysiol 120(11):1978–87

    Article  Google Scholar 

  72. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5

    Article  Google Scholar 

  73. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R et al (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–9

    Article  Google Scholar 

  74. Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–7

    Article  Google Scholar 

  75. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–72

    Article  Google Scholar 

  76. Yuan H, Perdoni C, Yang L, He B (2011) Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. J Neurosci 31(26):9585–93

    Article  Google Scholar 

  77. Cox RW, Jesmanowicz A, Hyde JS (1995) Real-time functional magnetic resonance imaging. Magn Reson Med 33(2):230–6

    Article  Google Scholar 

  78. Pfurtscheller G, Lopes da Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1847

    Article  Google Scholar 

  79. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  80. Pfurtscheller G, Neuper C, Flotzinger D (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103(6):642–651

    Article  Google Scholar 

  81. McFarland DJ, Miner LA, Vaughan TM, Wolpaw JR (2000) Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr 12:177–186

    Article  Google Scholar 

  82. Wang T, Deng J, He B (2004) Classifying EEG-based motor imagery tasks by means of time-frequency synthesized spatial patterns. Clin Neurophysiol 115:2744–2753

    Article  Google Scholar 

  83. Wang T, He B (2004) An efficient rhythmic component expression and weighting synthesis strategy for classifying motor imagery EEG in brain computer interface, J Neural Eng 1(1):1–7

    Article  Google Scholar 

  84. Yamawaki N, Wilke C, Liu Z, He B (2006) An enhanced time-frequency approach for motor imagery classification. IEEE Trans Neural Syst Rehabil Eng 14(2):250–254

    Article  Google Scholar 

  85. Miller KJ, Schalk G, Fetz EE, den Nijs M, Ojemann JG, Rao RP (2010) Cortical activity during motor execution, motor imagery, and imagery-based online feedback. Proc Natl Acad Sci USA 107:4430–4435

    Article  Google Scholar 

  86. Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchoubey B, Kübler A, Perelmouter J, Taub E, Flor H (1999) A spelling device for the paralysed. Nature 398(6725):297–298

    Article  Google Scholar 

  87. Birbaumer N, Kübler A, Ghanayim N, Hinterberger T, Perelmouter J, Kaiser J, Iversen I, Kotchoubey B, Neumann N, Flor H (2000) The thought translation device (TTD) for completely paralyzed patients. IEEE Trans Rehabil Eng 8(2):190–193

    Article  Google Scholar 

  88. Donchin E, Coles MGH (1988) Is the P300 component a manifestation of context updating? Behav Brain Sci 11:355–425

    Google Scholar 

  89. Kubler A, Kotchoubey B, Kaiser J, Wolpaw J, Birbaumer N (2001) Brain-computer communication: unlocking the locked in. Psychol Bull 127(3):358–375

    Article  Google Scholar 

  90. Spencer KM, Dien J, Donchin E (2001) Spatiotemporal analysis of the late ERP responses to deviant stimuli. Psychophysiology 38(2):343–358

    Article  Google Scholar 

  91. Sellers EW, Vaughan TM, Wolpaw JR (2010) A brain-computer interface for long-term independent home use. Amyotroph Lateral Scler 11(5):449–455

    Article  Google Scholar 

  92. Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on steady-state visual evoked response. IEEE Trans Rehabil Eng 8(2):211–214

    Article  Google Scholar 

  93. Ortner R, Allison B, Korisek G, Gaggl H, Pfurtscheller G (2011) An SSVEP BCI to control a hand orthosis for persons with tetraplegia. IEEE Trans Neural Syst Rehabil Eng 19(1):1–5

    Article  Google Scholar 

  94. Pan J, Gao X, Duan F, Yan Z, Gao S (2011) Enhancing the classification accuracy of steady-state visual evoked potential-based brain–computer interfaces using phase constrained canonical correlation analysis. J Neural Eng 8:036027

    Article  Google Scholar 

  95. Kennedy PR, Bakay RA (1998) Restoration of neural output from a paralyzed patient by a direct brain connection. NeuroReport 9:1707–1711

    Article  Google Scholar 

  96. Goncharova II, McFarland DJ, Vaughan TM, Wolpaw JR (2003) EMG contamination of EEG: spectral and topographical characteristics. Clin Neurophysiol 114:1580–1593

    Article  Google Scholar 

  97. McFarland DJ, McCane LM, David SV, Wolpaw JR (1997) Spatial filter selection for EEG-based communication. Electroencephalogr Clin Neurophysiol 103:386–394

    Article  Google Scholar 

  98. Hjorth B (1975) An on-line transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39(5):526–530

    Article  Google Scholar 

  99. Perrin F, Bertrand O, Pernier J (1987) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34:283–288

    Article  Google Scholar 

  100. He B, Cohen R (1992) Body surface Laplacian ECG mapping. IEEE Trans Biomed Eng 39(11):1179–1191

    Article  Google Scholar 

  101. Le J, Menon V, Gevins A (1992) Local estimate of surface Laplacian derivation on a realistically shaped scalp surface and its performance on noisy data. Electroencephalogr Clin Neurophysiol 92:433–441

    Google Scholar 

  102. Nunez P, Silberstein R, Cadusch P, Wijesinghe R, Westdorp A, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacians and cortical imaging. Electroencephalogr Clin Neurophysiol 90(1):40–57

    Article  Google Scholar 

  103. Babiloni F, Babiloni C, Carducci F, Fattorini L, Onorati P, Urbano A (1996) Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model. Electroencephalogr Clin Neurophysiol 98(4):363–73

    Article  Google Scholar 

  104. He B (1999) Brain electric source imaging: scalp Laplacian mapping and cortical imaging. Crit Rev Biomed Eng 27:149–188

    Google Scholar 

  105. He B, Lain J, Li G (2001) High-resolution EEG: a new realistic geometry spline Laplacian estimation technique. Clin Neurophysiol 112(5):845–852

    Article  Google Scholar 

  106. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2:1527–1537

    Google Scholar 

  107. Kettner RE, Schwartz AB, Georgopoulos AP (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. III. positional gradients and population coding of movement direction from various movement origins. J Neurosci 8:2938–2947

    Google Scholar 

  108. Fu QG, Flament D, Coltz JD, Ebner TJ (1995) Temporal encoding of movement kinematics in the discharge of primate primary motor and premotor neurons. J Neurophysiol 73:836–854

    Google Scholar 

  109. Schwartz AB (1994) Direct cortical representation of drawing. Science 265:540–542

    Article  Google Scholar 

  110. Paninski L, Fellows MR, Hatsopoulos NG, Donoghue JP (2004) Spatiotemporal tuning of motor cortical neurons for hand position and velocity. J Neurophysiol 91:515–532

    Article  Google Scholar 

  111. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159

    Article  Google Scholar 

  112. Blum AL, Langely P (1997) Selection of relevant features and examples in machine learning. Artif Intell 97:245–271

    Article  MATH  Google Scholar 

  113. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8(4):441–446

    Article  Google Scholar 

  114. Babiloni F, Cincotti F, Bianchi L, Pirri G, Millan J, Mourino J, Salinari S, Marciani MG (2001) Recognition of imagined hand movements with low resolution surface Laplacian and linear classifiers. Med Eng Phys 23:323–328

    Article  Google Scholar 

  115. Blankertz B, Curio G, Müller K (2002) Classifying single trial EEG: towards brain computer interfacing. Adv Neural Inf Proc Syst 14:157–164

    Google Scholar 

  116. Cincotti F, Mattia D, Babiloni C, Carducci F, Bianchi L, Millan J, Mourino J, Salinari S, Marciani M, Babiloni F (2002) Classification of EEG mental patterns by using two scalp electrodes and Mahalanobis distance based classifiers. Method Inform Med 41:337–341

    Google Scholar 

  117. Peters BO, Pfurtscheller G, Flyvbjerg H (1998) Mining multi-channel EEG for its information content: an ANN-based method for a brain-computer interface. Neural Netw 11:1429–1433

    Article  Google Scholar 

  118. Robert C, Gaudy J, Limoge A (2002) Electroencephalogram processing using neural networks. Clin Neurophysiol 113:694–701

    Article  Google Scholar 

  119. Deng J, He B (2003) Classification of imaginary tasks from three channels of EEG by using an artificial neural network. In: Proceedings of 25th international conference on IEEE EMBS, CD-ROM

    Google Scholar 

  120. Vallabhaneni A, He B (2004) Motor imagery task classification for brain computer interface applications using spatio-temporal principle component analysis. Neurol Res 26(3):282–287

    Article  Google Scholar 

  121. Obermaier B, Guger C, Neuper C, Pfurthscheller G (2001) Hidden Markov models for online classification of single trial EEG data. Pattern Recogn Lett 22:1299–1309

    Article  MATH  Google Scholar 

  122. Curran E, Sykacek P, Stokes M, Roberts SJ, Penny W, Johnsrude I, Owen AM (2004) Cognitive tasks for driving a brain–computer interfacing system: a pilot study. IEEE Trans Neural Syst Rehabil Eng 12:48–54

    Article  Google Scholar 

  123. Lemm S, Schafer C, Curio G (2004) BCI competition 2003–data set III: probabilistic modeling of sensorimotor mu rhythms for classification of imaginary hand movements. IEEE Trans Biomed Eng 51:1077–80

    Article  Google Scholar 

  124. Bashashati A, Fatourechi M, Wardand RK, Birch GE (2007) A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals (Topical review). J Neural Eng 4:R32–R57. doi:10.1088/1741-2560/4/2/R03

    Article  Google Scholar 

  125. Lotte F, Congedo M, Lecuyer A, Lamarche F, Arnaldi B (2007) A review of classification algorithms for EEG-based brain–computer interfaces (Topical review). J Neural Eng 4:R1–R13. doi:10.1088/1741-2560/4/2/R01

    Article  Google Scholar 

  126. Krusienski DJ, McFarland DJ, Principe JC (2012) BCI signal processing: feature extraction. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 123–146

    Google Scholar 

  127. McFarland DJ, Krusienski DJ (2012) BCI signal processing: feature translation. In: Wolpaw JR, Wolpaw EW (eds) Brain-computer interfaces: principles and practice. Oxford University Press, Oxford, pp 147–164

    Google Scholar 

  128. Moritz CT, Perlmutter SI, Fetz EE (2008) Direct control of paralysed muscles by cortical neurons. Nature 456:639–642

    Article  Google Scholar 

  129. Tam W, Tong K, Meng F, Gao S (2011) A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study. IEEE Trans Neural Syst Rehabil Eng 19(6):617–627

    Article  Google Scholar 

  130. Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39(3):910–7

    Article  Google Scholar 

  131. Dimyan MA, Cohen LG (2011) Neuroplasticity in the context of motor rehabilitation after stroke. Nat Rev Neurol 7(2):76–85

    Article  Google Scholar 

  132. Alon G, Sunnerhagen KS, Geurts AC, Ohry A (2003) A home-based, selfadministered stimulation program to improve selected hand functions of chronic stroke. NeuroRehabilitation 18:215–25

    Google Scholar 

  133. Ring H, Rosenthal N (2005) Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. J Rehabil Med 37:32–36

    Article  Google Scholar 

  134. Daly JJ, Hogan N, Perepezko EM et al (2005) Response to upper-limb robotics and functional neuromuscular stimulation following stroke. J Rehabil Res Dev 42:723–36

    Article  Google Scholar 

  135. Royer A, Rose M, He B (2011) Goal selection vs. process control while learning to use a brain-computer interface. J Neural Eng 8(3):036012

    Article  Google Scholar 

  136. Pfurtscheller G, Leeb R, Keinrath C, Friedman D, Neuper C, Guger C, Slater M (2006) Walking from thought. Brain Res 1071:145–152

    Article  Google Scholar 

  137. Schalk G, McFarland D, Hinterberger T, Birbaumer N, Wolpaw J (2004) BCI2000: a general purpose brain-computer interface (BCI) system. IEEE Trans Biomed Eng 51:1034–1043

    Article  Google Scholar 

  138. Schalk G, Mellinger J (2010) A practical guide to brain-computer interfacing with BCI 2000. Springer, Berlin

    Book  Google Scholar 

  139. Wolpaw JR (2010) Brain-computer interface research comes of age: traditional assumptions meet emerging realities. J Motor Behav 42:351–353

    Article  Google Scholar 

  140. Pfurtscheller G, Flotzinger D, Kallcher J (1993) Brain-computer interface: a new communication device for handicapped persons. J Microcomput Appl 16:293–299

    Article  Google Scholar 

  141. Donchin E (1981) Presidential address, 1980. Surprise! … Surprise? Psychophysiology 18:493–513

    Article  Google Scholar 

  142. Donchin E, Spencer KM, Wijesinghe R (2000) The mental prosthesis: assessing the speed of a P300-based brain–computer interface. IEEE Trans Rehabil Eng 8(2):174–179

    Article  Google Scholar 

  143. Townsend G, LaPallo BK, Boulay CB, Krusienski DJ, Frye GE, Hauser CK, Schwartz NE, Vaughan TM, Wolpaw JR, Seller EW (2010) A novel P300-based brain–computer interface stimulus presentation paradigm: moving beyond rows and columns. Clin Neurophysiol 121:1109–1120

    Article  Google Scholar 

  144. Martens SMM, Hill NJ, Farquhar J, Schölkopf B (2009) Overlap and refractory effects in a brain–computer interface speller based on the visual P300 event-related potential. J Neural Eng 6:026003

    Article  Google Scholar 

  145. Jin J, Allison BZ, Sellers EW, Brunner C, Horki P, Wang X, Neuper C (2011) An adaptive P300-based control system. J Neural Eng 8(3):036006. doi:10.1088/1741-2560/8/3/036006

    Article  Google Scholar 

  146. Treder MS, Blankertz B (2010) Covert attention and visual speller design in an ERP-based brain–computer interface. Behav Brain Funct 6(1):28

    Article  Google Scholar 

  147. Brunner P, Joshi S, Briskin S, Wolpaw JR, Bischof H, Schalk G (2010) Does the ‘P300’ speller depend on eye gaze? J Neural Eng 7(5):056013

    Article  Google Scholar 

  148. Liu Y, Zhou Z, Hu D (2011) Gaze independent brain–computer speller with covert visual search tasks. Clin Neurophysiol 122:1127–1136

    Article  Google Scholar 

  149. Hong B, Guo F, Liu T, Gao X, Gao S (2009) N200-speller using motion-onset visual response. ClinNeurophysiol 120(9):1658–66

    Google Scholar 

  150. Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 14(2):234–239

    Article  Google Scholar 

  151. Bin G, Gao X, Wang Y, Hong B, Gao S (2009a) VEP-based brain-computer interfaces: time, frequency, and code modulations. IEEE Comput Intell Mag 22–26

    Google Scholar 

  152. Cheng M, Gao X, Gao S, Xu D (2002) Design and Implementation of a brain-computer interface with high transfer rates. IEEE Trans Biomed Eng 49(10):1181–1186

    Article  Google Scholar 

  153. Gao X, Xu D, Cheng M, Gao S (2003) A BCI-based environmental controller for the motiondisabled. IEEE Trans Neural Syst Rehabil Eng 11(2):137–140

    Article  Google Scholar 

  154. Bin G, Gao X, Yan Z, Hong B, Gao S (2009) An online multi-channel SSVEP-based brain–computer interface using a canonical correlation analysis method. J Neural Eng 6:046002. doi:10.1088/1741-2560/6/4/046002

    Article  Google Scholar 

  155. Guo F, Hong B, Gao X, Gao S (2008) A brain computer interface using motion-onset visual evoked potential. J Neural Eng 5(4):477–485

    Article  Google Scholar 

  156. Lee PL, Hsieh JC, Wu CH, Shyu KK, Chen SS, Yeh TC, Wu YT (2006) The brain computer interface using flash visual evoked potential and independent component analysis. Ann Biomed Eng 34(10):1641–1654

    Article  Google Scholar 

  157. Lee PL, Hsieh JC, Wu CH, Shyu KK, Wu YT (2008) Brain computer interface using flash onset and offset visual evoked potentials. Clin Neurophysiol 119(3):605–616

    Article  Google Scholar 

  158. Sutter EE (1984) The visual evoked response as a communication channel. IEEE Trans Biomed Eng 31(8):583

    Google Scholar 

  159. Hanagata J, Momose K (2002) A method for detecting gazed target using visual evoked potentials elicited by pseudorandom stimuli. In: Proceedings of 5th Asia Pacific conference on medical and biological engineering and 11th international conference on biomedical engineering (ICBME)

    Google Scholar 

  160. Momose K (2007) Evaluation of an eye gaze point detection method using VEP elicited by multi-pseudorandom stimulation for brain computer interface. In: Proceedings of 29th annual international conference of IEEE EMBS

    Google Scholar 

  161. Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP. J Neural Eng 8:025015. doi:10.1088/1741-2560/8/2/025015

    Article  Google Scholar 

  162. Kluge T, Hartmann M (2007) Phase coherent detection of steady-stateevoked potentials: Experimental results and application to brain–computer interfaces. In: Proceedings of 3rd International IEEE EMBS neural engineering conference, pp 425–429

    Google Scholar 

  163. Wilson JJ, Palaniappan R (2009) Augmenting a SSVEP BCI through single cycle analysis and phase weighting. In: Proceedings of 4th international IEEE EMBS conference on neural engineering, Antalya, Turkey, pp 371–374

    Google Scholar 

  164. Jia C, Gao X, Hong B, Gao S (2011) Frequency and phase mixed coding in SSVEP-based brain–computer interface. IEEE Trans Biomed Eng 58(1):200–206

    Article  Google Scholar 

  165. Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials: feasibility of practical system designs. IEEE EMBS Mag 27(5):64–71

    Google Scholar 

  166. Wang Y, Gao X, Hong B, Jia C, Gao S (2008) Brain-computer interfaces based on visual evoked potentials. IEEE Eng Med Biol Mag 27(5):64–71

    Article  Google Scholar 

  167. Nijboer F, Furdea A, Gunst I, Mellinger J, McFarland DJ, Birbaumer N, Kubler A (2008) An auditory brain-computer interface. J Neurosci Methods 167:43–50

    Article  Google Scholar 

  168. Hinterberger T, Hill J, Birbaumer N (2004) An auditory brain-computercommunication device. In: Paper presented at the IEEE International Workshop on Biomedical Circuits Systems, Singapore

    Google Scholar 

  169. Pham M, Hinterberger T, Neumann N, Kubler A, Hofmayer N, Grether A, Wilhelm B, Vatine JJ, Birbaumer N (2005) An auditory brain-computer interface based on the self-regulation of slow cortical potentials. Neurorehabil Neural Repair 19:206–218

    Article  Google Scholar 

  170. Hill NJ, Lal TN, Bierig K, Birbaumer N, Scholkopf B (2004) Attentional modulation of auditory event-related potentials in a brain-computer interface. In: IEEE international workshop on biomedical circuits systems, Singapore

    Google Scholar 

  171. Sellers EW, Donchin E (2006) A P300-based brain-computer-interface: initial tests by ALS patients. Clin Neurophysiol 117:538–548

    Article  Google Scholar 

  172. Furdea A, Halder S, Krusienski DJ (2009) An auditory oddball (P300) spelling system for brain-computer interfaces. Psychophysiology 46:617–625

    Article  Google Scholar 

  173. Guo J, Gao S, Hong B (2010) An auditory brain–computer interface using active mental response. IEEE Trans Neural Syst Rehabil Eng 18(3):230–235

    Article  Google Scholar 

  174. Kubler A, Furdea A, Halder S, Hammer EM, Nijboer F, Kotchoubey B (2009) A brain-computer interface controlled auditory event-related potential (P300) spelling system for locked-in patients. Disord Conscious 1157:90–100

    Google Scholar 

  175. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  Google Scholar 

  176. Posner MI, Dehane S (1994) Attentional networks. Trends Neurosci 17:75–9

    Article  Google Scholar 

  177. Desimone R, Duncan J (1995) Neural mechanisms of selective visual-attention. Annu Rev Neurosci 18:193–222

    Article  Google Scholar 

  178. Kelly SP, Lalor EC, Finucane C, McDarby G, Reilly RB (2005) Visual spatial attention control in an independentbrain–computer interface. IEEE Trans Biomed Eng 52:1588–96

    Article  Google Scholar 

  179. Kelly SP, Lalor EC, Reilly RB, FoxeJ J (2005) Visual spatial attention tracking using high-density SSVEP data for independent brain–computer communication. IEEE Trans Neural Syst Rehabil Eng 13:172–8

    Article  Google Scholar 

  180. Zhang D, Maye A, Gao X, Hong B, Engel AK, Gao S (2010) An independent brain–computer interface using covert non-spatial visual selective attention. J Neural Eng 7:016010

    Article  Google Scholar 

  181. Wolpaw JR, Ramoser H, McFarland DJ, Pfurtscheller G (1998) EEG-based communication: improved accuracy by response verification. IEEE Trans Rehabil Eng 6(3):326–333

    Article  Google Scholar 

  182. Pierce JR (1980) An introduction to information theory. Dover, New York, NY

    MATH  Google Scholar 

  183. Shannon CE, Weaver W (1964) The mathematical theory of communication. University of Illinois Press, Urbana, IL

    Google Scholar 

  184. Curran EA, Stokes MJ (2003) Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn 51:326–336

    Article  Google Scholar 

  185. Babiloni F, Cincotti F, Lazzarini L, Millán J, Mouriño J, Varsta M, Heikkonen J, Bianchi L, Marciani MG (2000) Linear classification of low-resolution EEG patterns produced by imagined hand movements. IEEE Trans Rehabil Eng 8(2):186–188

    Article  Google Scholar 

  186. Penny WD, Roberts SJ, Curran EA, Stokes MJ (2000) EEG-based communication: a pattern recognition approach. IEEE Trans Rehabil Eng 8(2):214–215

    Article  Google Scholar 

  187. Penny WD, Roberts SJ (1999) EEG-based communication via dynamic neural network models. In: Proceedings of international joint conference on neural networks, CDROM

    Google Scholar 

  188. Royer AS, He B (2009) Goal selection vs. process control in a brain-computer interface based on sensorimotor rhythms. J Neural Eng 6(1):016005

    Article  Google Scholar 

  189. Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuroprosthetic control. PLoS Biol 7:e1000153

    Article  Google Scholar 

  190. Qin L, He B (2005) A wavelet-based time-frequency analysis approach for classification of motor imagery for brain-computer interface applications. J Neural Eng 2(4):65–72

    Article  Google Scholar 

  191. Pfurtscheller G, Müller GR, Pfurtscheller J, Gerner HJ, Rupp R. 'Thought'–control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett. 2003 Nov 6 351(1):33–36

    Google Scholar 

  192. Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, Aertsen A, Mehring C. Hand movement direction decoded from MEG and EEG. J Neurosci. 2008 Jan 23, 28(4):1000–1008

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NSF CBET-0933067, DGE-1069104, NIH EB007920, and EB006433, by NSF of China-90820304, as well as by NIH HD30146 and EB00856.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

He, B., Gao, S., Yuan, H., Wolpaw, J.R. (2013). Brain–Computer Interfaces. In: He, B. (eds) Neural Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5227-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5227-0_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5226-3

  • Online ISBN: 978-1-4614-5227-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics