Skip to main content

Blood Flow and Oxygenation Status of Prostate Cancers

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXIV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 765))

Abstract

Hypoxia is a characteristic of many solid tumors, can lead to the development of an aggressive phenotype and acquired treatment resistance, and is an independent, adverse prognostic indicator. In this literature review, we show that hypoxia is also a typical feature in prostate cancer (PC), the most commonly diagnosed cancer among men in most western countries. Data on blood flow (a major determinant of oxygenation status in malignancies) and on the oxygenation status (as assessed by O2-sensitive electrodes) are presented. Where possible, data on prostate cancers are compared to normal prostate (NP) tissue and benign prostate hyperplasia (BPH). The average blood flow rate in NP is 0.21 vs. 0.28 mL/g/min in BPH. Blood flow in PC is approximately three times higher than in NP (mean flow: 0.64 mL/g/min) and shows pronounced intra- and inter-tumor variability. Despite relatively high flow rates in PC, the overall mean pO2 in cancers is 6 mmHg compared to 26 mmHg in NP. As was the case with blood flow, tissue oxygenation was extremely heterogeneous with no clear dependency on a series of tumor (Gleason score, clinical size, androgen deprivation) and patient characteristics (serum PSA levels, age).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P (2009) Physiological mechanisms of treatment resistance. In: Molls M, Vaupel P, Nieder C et al (eds) The impact of tumor biology on cancer treatment and multidisciplinary strategies. Springer, Berlin, Heidelberg, pp 273–290

    Chapter  Google Scholar 

  2. Vaupel P (2008) Hypoxia and aggressive tumor phenotype: implications for therapy and prognosis. Oncologist 13(suppl 3):21–36

    Article  CAS  PubMed  Google Scholar 

  3. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14:198–206

    Article  PubMed  Google Scholar 

  4. Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9:10–17

    Article  CAS  PubMed  Google Scholar 

  5. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  CAS  PubMed  Google Scholar 

  6. Vaupel P, Mayer A, Hoeckel M (2004) Tumor hypoxia and malignant progression. Methods Enzymol 381:335–354

    Article  CAS  PubMed  Google Scholar 

  7. Hoeckel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276

    Article  Google Scholar 

  8. Hoeckel M, Knoop C, Schlenger K et al (1993) Intra-tumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26:45–50

    Article  Google Scholar 

  9. Hoeckel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    Google Scholar 

  10. Siegel R, Ward E, Brawley O et al (2011) Cancer statistics 2011. CA Cancer J Clin 61:212–236

    Article  PubMed  Google Scholar 

  11. Inaba T (1992) Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography. J Urol 148:1457–1460

    Article  CAS  PubMed  Google Scholar 

  12. Bolmsjö M, Sturesson C, Wagrell L et al (1998) Optimizing transurethral microwave thermotherapy: a model for studying power, blood flow, temperature variations and tissue destruction. Br J Urol 81:811–816

    Article  PubMed  Google Scholar 

  13. Harvey CJ, Blomley MJK, Dawson P et al (2001) Functional CT imaging of the acute hyperemic response to radiation therapy of the prostate gland: early experience. J Comput Assist Tomogr 25:43–49

    Article  CAS  PubMed  Google Scholar 

  14. Hendersen E, Milosevic MF, Haider MA et al (2003) Functional CT imaging of prostate cancer. Phys Med Biol 48:3085–3100

    Article  Google Scholar 

  15. Kershaw LE, Logue JP, Hutchinson CE et al (2008) Late tissue effects following radiotherapy and neoadjuvant hormone therapy of the prostate measured with quantitative magnetic resonance imaging. Radiother Oncol 88:127–134

    Article  CAS  PubMed  Google Scholar 

  16. Buckley DL, Roberts C, Parker GJM et al (2004) Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging—initial experience. Radiology 233:709–715

    Article  PubMed  Google Scholar 

  17. Franiel T, Lüdemann L, Rudolph B et al (2009) Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters. Radiology 252:101–108

    Article  PubMed  Google Scholar 

  18. Toma H, Nakamura R, Onitsuka S et al (1988) Effect of endocrine treatment on prostatic blood flow in patients with prostatic adenocarcinoma. J Urol 140:91–95

    Article  CAS  PubMed  Google Scholar 

  19. Franiel T, Lüdemann L, Lutz MS et al (2008) Evaluation of normal prostate tissue, chronic prostatitis, and prostate cancer by quantitative perfusion analysis using a dynamic contrast-enhanced inversion-prepared dual-contrast gradient echo sequence. Invest Radiol 43:481–487

    Article  PubMed  Google Scholar 

  20. Ives EP, Burke MA, Edmonds PR et al (2005) Quantitative computed tomography perfusion of prostate cancer: correlation with whole-mount pathology. Clin Prostate Cancer 4:109–112

    Article  PubMed  Google Scholar 

  21. Mitterberger M, Aigner F, Pinggera GM et al (2010) Contrast-enhanced colour Doppler-targeted prostate biopsy: correlation of a subjective blood-flow rating scale with the histopathological outcome of the biopsy. BJU Int 106:1315–1318

    Article  PubMed  Google Scholar 

  22. Alonzi R, Padhani AR, Taylor NJ et al (2011) Antivascular effects of neoadjuvant androgen deprivation for prostate cancer: an in vivo human study using susceptibility and relaxivity dynamic MRI. Int J Radiat Oncol Biol Phys 80:721–727

    Article  CAS  PubMed  Google Scholar 

  23. Franiel T, Hamm B, Hricak H (2011) Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol 21:616–626

    Article  PubMed  Google Scholar 

  24. Movsas B, Chapman JD, Horwitz EM et al (1999) Hypoxic regions exist in human prostate carcinoma. Urology 53:11–18

    Article  CAS  PubMed  Google Scholar 

  25. Vaupel P, Hoeckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1235

    Article  CAS  PubMed  Google Scholar 

  26. Rasey JS, Koh WJ, Evans ML et al (1996) Quantifying regional hypoxia in human tumors with positron emission tomography of [18F]fluoromisonidazole: a pretherapy study of 37 patients. Int J Radiat Oncol Biol Phys 36:417–428

    Article  CAS  PubMed  Google Scholar 

  27. Chan N, Milosevic M, Bristow RG (2007) Tumor hypoxia, DNA repair and prostate cancer progression: new targets and new therapies. Future Oncol 3:329–341

    Article  CAS  PubMed  Google Scholar 

  28. Movsas B, Chapman JD, Greenberg RE et al (2000) Increasing levels of hypoxia in prostate carcinoma correlate significantly with increasing clinical stage and patient age. Cancer 89:2018–2024

    Article  CAS  PubMed  Google Scholar 

  29. Parker C, Milosevic M, Toi A et al (2004) Polarographic electrode study of tumor oxygenation in clinically localized prostate cancer. Int J Radiat Oncol Biol Phys 58:750–757

    Article  PubMed  Google Scholar 

  30. Milosevic M, Chung P, Parker C et al (2007) Androgen withdrawal in patients reduces prostate cancer hypoxia: implications for disease progression and radiation response. Cancer Res 67:6022–6025

    Article  CAS  PubMed  Google Scholar 

  31. Anastasiadis AG, Stisser BC, Ghafar MA et al (2002) Tumor hypoxia and the progression of prostate cancer. Curr Urol Rep 3:222–228

    Article  PubMed  Google Scholar 

  32. Cvetkovic D, Movsas B, Dicker AP et al (2001) Increased hypoxia correlates with increased expression of the angiogenesis marker vascular endothelial growth factor in human prostate cancer. Urology 57:821–825

    Article  CAS  PubMed  Google Scholar 

  33. Movsas B, Chapman JD, Hanlon AL et al (2002) Hypoxic prostate/muscle pO2 ratio predicts for biochemical failure in patients with prostate cancer: preliminary findings. Urology 60:634–639

    Article  PubMed  Google Scholar 

  34. Zhong H, de Marzo AM, Laughner E et al (1999) Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

  35. Du ZX, Fujiyama C, Chen YX et al (2003) Expression of hypoxia-inducible factor 1α in human normal, benign, and malignant prostate tissue. Chin Med J 116:1936–1939

    CAS  PubMed  Google Scholar 

  36. Green MML, Hiley CT, Shanks JH et al (2007) Expression of vascular endothelial growth factor (VEGF) in locally invasive prostate cancer is prognostic for radiotherapy outcome. Int J Radiat Oncol Biol Phys 67:84–90

    Article  CAS  PubMed  Google Scholar 

  37. Ferrer FA, Miller LJ, Andrawis RI et al (1997) Vascular endothelial growth factor (VEGF) expression in human prostate cancer: in situ and in vivo expression of VEGF by human prostate cancer cells. J Urol 157:2329–2333

    Article  CAS  PubMed  Google Scholar 

  38. Jans J, van Dijk JH, van Scheiven S et al (2010) Expression and localization of hypoxia proteins in prostate cancer: prognostic implications after radical prostatectomy. Urology 75:786–792

    Article  PubMed  Google Scholar 

  39. Vergis R, Corbishley CM, Norman AR et al (2008) Intrinsic markers of tumour hypoxia and angiogenesis in localized prostate cancer and outcome of radical treatment: a retrospective analysis of two randomized radiotherapy trials and one surgical cohort study. Lancet Oncol 9:342–351

    Article  PubMed  Google Scholar 

  40. Muramoto P et al (2002) H 152 O positron emission tomography validation of semiquantitative prostate blood flow determined by double-echo dynamic MRI: a preliminary study. J Comput Assist Tomogr 26:510–514

    Article  PubMed  Google Scholar 

  41. Venn SN, Hughes SW, Montgomery BSI et al (1996) Heating characteristics of a 434 MHz transurethral system for the treatment of BPH and interstitial thermometry. Int J Hyperthmia 12:271–278

    Article  CAS  Google Scholar 

  42. Franiel T, Lüdemann L, Taupitz M et al (2009) Pharmacokinetic MRI of the prostate: parameters for differentiating low-grade and high-grade prostate cancer. Fortschr Röntgenstr 181:536–542

    Article  CAS  Google Scholar 

  43. van Vulpen M, Raaymakers BW, de Leeuw AAC et al (2002) Prostate perfusion in patients with locally advanced prostate carcinoma treated with different hyperthermia techniques. J Urol 168:1597–1602

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vaupel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Vaupel, P., Kelleher, D.K. (2013). Blood Flow and Oxygenation Status of Prostate Cancers. In: Welch, W.J., Palm, F., Bruley, D.F., Harrison, D.K. (eds) Oxygen Transport to Tissue XXXIV. Advances in Experimental Medicine and Biology, vol 765. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4989-8_42

Download citation

Publish with us

Policies and ethics