Skip to main content

Role of Glycosphingolipids in Dendritic Cell-Mediated HIV-1 Trans-infection

  • Chapter
  • First Online:
HIV Interactions with Dendritic Cells

Abstract

Glycosphingolipids (GSLs) are components of the cell membrane that comprise a membrane bound lipid, ceramide, coupled to an extracellular carbohydrate. GSLs impact numerous aspects of membrane biology, including membrane fluidity, curvature, and organization. The role of these molecules in both chronic inflammation and infectious disease and underlying pathogenic mechanisms are just starting to be recognized. As a component of the cell membrane, GSLs are also incorporated into lipid bilayers of diverse enveloped viruses as they bud out from the host cell and can go on to have a significant influence on viral pathogenesis. Dendritic cell (DC) subsets located in the peripheral mucosal tissues are proposed to be one of the earliest cell types that encounter transmitted viruses and help initiate adaptive immune responses against the invading pathogen by interacting with T cells. In turn, viruses, as obligatory intracellular parasites, rely on host cells for completing their replication cycle, and not surprisingly, HIV has evolved to exploit DC biology for the initial transmission event as well as for its dissemination and propagation within the infected host. In this review, we describe the mechanisms by which GSLs impact DC-mediated HIV trans-infection by either modulating virus infectivity, serving as a direct virus particle-associated host-derived ligand for specific interactions with DCs, or modulating the T cell membrane in such a way as to impact viral entry and thereby productive infection of CD4+ T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson CS, Freed EO (2007) Human immunodeficiency virus type 1 assembly, release, and maturation. Adv Pharmacol 55:347–387

    PubMed  CAS  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Arrighi JF, Pion M, Garcia E, Escola JM, van Kooyk Y, Geijtenbeek TB, Piguet V (2004a) DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells. J Exp Med 200(10):1279–1288

    PubMed  CAS  Google Scholar 

  • Arrighi JF, Pion M, Wiznerowicz M, Geijtenbeek TB, Garcia E, Abraham S, Leuba F, Dutoit V, Ducrey-Rundquist O, van Kooyk Y, Trono D, Piguet V (2004b) Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 78(20):10848–10855

    PubMed  CAS  Google Scholar 

  • Austyn JM (1998) Dendritic cells. Curr Opin Hematol 5(1):3–15

    PubMed  CAS  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    PubMed  CAS  Google Scholar 

  • Blander JM, Visintin I, Janeway CA Jr, Medzhitov R (1999) Alpha(1,3)-fucosyltransferase VII and alpha(2,3)-sialyltransferase IV are up-regulated in activated CD4 T cells and maintained after their differentiation into Th1 and migration into inflammatory sites. J Immunol 163(7):3746–3752

    PubMed  CAS  Google Scholar 

  • Bobardt MD, Saphire AC, Hung HC, Yu X, Van der Schueren B, Zhang Z, David G, Gallay PA (2003) Syndecan captures, protects, and transmits HIV to T lymphocytes. Immunity 18(1):27–39

    PubMed  CAS  Google Scholar 

  • Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746(3):284–294

    PubMed  CAS  Google Scholar 

  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM (2002) Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med 196(12):1627–1638

    PubMed  CAS  Google Scholar 

  • Boscardin SB, Hafalla JC, Masilamani RF, Kamphorst AO, Zebroski HA, Rai U, Morrot A, Zavala F, Steinman RM, Nussenzweig RS, Nussenzweig MC (2006) Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses. J Exp Med 203(3):599–606

    PubMed  CAS  Google Scholar 

  • Bozzacco L, Trumpfheller C, Siegal FP, Mehandru S, Markowitz M, Carrington M, Nussenzweig MC, Piperno AG, Steinman RM (2007) DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc Natl Acad Sci U S A 104(4):1289–1294

    PubMed  CAS  Google Scholar 

  • Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319(5865):921–926

    PubMed  CAS  Google Scholar 

  • Brugger B, Glass B, Haberkant P, Leibrecht I, Wieland FT, Krausslich HG (2006) The HIV lipidome: a raft with an unusual composition. Proc Natl Acad Sci U S A 103(8):2641–2646

    PubMed  Google Scholar 

  • Bryant M, Ratner L (1990) Myristoylation-dependent replication and assembly of human immunodeficiency virus 1. Proc Natl Acad Sci U S A 87(2):523–527

    PubMed  CAS  Google Scholar 

  • Burleigh L, Lozach PY, Schiffer C, Staropoli I, Pezo V, Porrot F, Canque B, Virelizier JL, Arenzana-Seisdedos F, Amara A (2006) Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J Virol 80(6):2949–2957

    PubMed  CAS  Google Scholar 

  • Cameron PU, Freudenthal PS, Barker JM, Gezelter S, Inaba K, Steinman RM (1992) Dendritic cells exposed to human immunodeficiency virus type-1 transmit a vigorous cytopathic infection to CD4+ T cells. Science 257(5068):383–387

    PubMed  CAS  Google Scholar 

  • Cameron PU, Handley AJ, Baylis DC, Solomon AE, Bernard N, Purcell DF, Lewin SR (2007) Preferential infection of dendritic cells during human immunodeficiency virus type 1 infection of blood leukocytes. J Virol 81(5):2297–2306

    PubMed  CAS  Google Scholar 

  • Cavrois M, De Noronha C, Greene WC (2002) A sensitive and specific enzyme-based assay detecting HIV-1 virion fusion in primary T lymphocytes. Nat Biotechnol 20(11):1151–1154

    PubMed  CAS  Google Scholar 

  • Chan R, Uchil PD, Jin J, Shui G, Ott DE, Mothes W, Wenk MR (2008) Retroviruses HIV and MLV are enriched in phosphoinositides. J Virol 82(22):11228–11238

    PubMed  CAS  Google Scholar 

  • Chen Y, Qin J, Chen ZW (2008) Fluorescence-topographic NSOM directly visualizes peak-valley polarities of GM1/GM3 rafts in cell membrane fluctuations. J Lipid Res 49(10):2268–2275

    PubMed  CAS  Google Scholar 

  • Coffin JM (1996) HIV viral dynamics. AIDS 10(Suppl 3):S75–S84

    PubMed  CAS  Google Scholar 

  • Cooling LL, Koerner TA, Naides SJ (1995) Multiple glycosphingolipids determine the tissue tropism of parvovirus B19. J Infect Dis 172(5):1198–1205

    PubMed  CAS  Google Scholar 

  • D’Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A, Godi A, West G, Bielawski J, Chuang CC, van der Spoel AC, Platt FM, Hannun YA, Polishchuk R, Mattjus P, De Matteis MA (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449(7158):62–67

    PubMed  Google Scholar 

  • D’Angelo G, Rega LR, De Matteis MA (2012) Connecting vesicular transport with lipid synthesis: FAPP2. Biochim Biophys Acta 1821(8):1089–1095

    Google Scholar 

  • de Jong MA, de Witte L, Oudhoff MJ, Gringhuis SI, Gallay P, Geijtenbeek TB (2008) TNF-alpha and TLR agonists increase susceptibility to HIV-1 transmission by human Langerhans cells ex vivo. J Clin Invest 118(10):3440–3452

    PubMed  Google Scholar 

  • de Witte L, Bobardt M, Chatterji U, Degeest G, David G, Geijtenbeek TB, Gallay P (2007a) Syndecan-3 is a dendritic cell-specific attachment receptor for HIV-1. Proc Natl Acad Sci U S A 104(49):19464–19469

    PubMed  Google Scholar 

  • de Witte L, Nabatov A, Pion M, Fluitsma D, de Jong MA, de Gruijl T, Piguet V, van Kooyk Y, Geijtenbeek TB (2007b) Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat Med 13(3):367–371

    PubMed  Google Scholar 

  • Doms RW, Trono D (2000) The plasma membrane as a combat zone in the HIV battlefield. Genes Dev 14(21):2677–2688

    PubMed  CAS  Google Scholar 

  • Dong C, Janas AM, Wang JH, Olson WJ, Wu L (2007) Characterization of human immunodeficiency virus type 1 replication in immature and mature dendritic cells reveals dissociable cis- and trans-infection. J Virol 81(20):11352–11362

    PubMed  CAS  Google Scholar 

  • Douek DC, Roederer M, Koup RA (2009) Emerging concepts in the immunopathogenesis of AIDS. Annu Rev Med 60:471–484

    PubMed  CAS  Google Scholar 

  • Embretson J, Zupancic M, Ribas JL, Burke A, Racz P, Tenner-Racz K, Haase AT (1993) Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS [see comments]. Nature 362(6418):359–362

    PubMed  CAS  Google Scholar 

  • Engering A, Geijtenbeek TB, van Kooyk Y (2002) Immune escape through C-type lectins on dendritic cells. Trends Immunol 23(10):480–485

    PubMed  CAS  Google Scholar 

  • Epand RM, Nir S, Parolin M, Flanagan TD (1995) The role of the ganglioside GD1a as a receptor for Sendai virus. Biochemistry 34(3):1084–1089

    PubMed  CAS  Google Scholar 

  • Fahrbach KM, Barry SM, Ayehunie S, Lamore S, Klausner M, Hope TJ (2007) Activated CD34-derived Langerhans cells mediate transinfection with human immunodeficiency virus. J Virol 81(13):6858–6868

    PubMed  CAS  Google Scholar 

  • Fantini J, Tamalet C, Hammache D, Tourrès C, Duclos N, Yahi N (1998) HIV-1-induced perturbations of glycosphingolipid metabolism are cell-specific and can be detected at early stages of HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovirol 19(3):221–229

    PubMed  CAS  Google Scholar 

  • Fantini J, Hammache D, Pieroni G, Yahi N (2000) Role of glycosphingolipid microdomains in CD4-dependent HIV-1 fusion. Glycoconj J 17(3–4):199–204

    PubMed  CAS  Google Scholar 

  • Feinberg H, Guo Y, Mitchell DA, Drickamer K, Weis WI (2005) Extended neck regions stabilize tetramers of the receptors DC-SIGN and DC-SIGNR. J Biol Chem 280(2):1327–1335

    PubMed  CAS  Google Scholar 

  • Figdor CG, van Kooyk Y, Adema GJ (2002) C-type lectin receptors on dendritic cells and Langerhans cells. Nat Rev Immunol 2(2):77–84

    PubMed  CAS  Google Scholar 

  • Finzi D, Silliciano RF (1998) Viral dynamics in HIV-1 infection. Cell 93(5):665–671

    PubMed  CAS  Google Scholar 

  • Frank I, Piatak M Jr, Stoessel H, Romani N, Bonnyay D, Lifson JD, Pope M (2002) Infectious and whole inactivated simian immunodeficiency viruses interact similarly with primate dendritic cells (DCs): differential intracellular fate of virions in mature and immature DCs. J Virol 76(6):2936–2951

    PubMed  CAS  Google Scholar 

  • Frankel SS, Wenig BM, Burke AP, Mannan P, Thompson LD, Abbondanzo SL, Nelson AM, Pope M, Steinman RM (1996) Replication of HIV-1 in dendritic cell-derived syncytia at the mucosal surface of the adenoid. Science 272(5258):115–117

    PubMed  CAS  Google Scholar 

  • Freund D, Fonseca AV, Janich P, Bornhauser M, Corbeil D (2010) Differential expression of biofunctional GM1 and GM3 gangliosides within the plastic-adherent multipotent mesenchymal stromal cell population. Cytotherapy 12(2):131–142

    PubMed  CAS  Google Scholar 

  • Fujita A, Cheng J, Hirakawa M, Furukawa K, Kusunoki S, Fujimoto T (2007) Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol Biol Cell 18(6):2112–2122

    PubMed  CAS  Google Scholar 

  • Garcia E, Pion M, Pelchen-Matthews A, Collinson L, Arrighi JF, Blot G, Leuba F, Escola JM, Demaurex N, Marsh M, Piguet V (2005) HIV-1 trafficking to the dendritic cell-T-cell infectious synapse uses a pathway of tetraspanin sorting to the immunological synapse. Traffic 6(6):488–501

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y, Figdor CG (2000) Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 100(5):575–585

    PubMed  CAS  Google Scholar 

  • Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K (2010) Development of monocytes, macrophages, and dendritic cells. Science 327(5966):656–661

    PubMed  CAS  Google Scholar 

  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI, Christodoulou E, Walker PA, Kelly G, Haire LF, Yap MW, de Carvalho LP, Stoye JP, Crow YJ, Taylor IA, Webb M (2011) HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480(7377):379–382

    PubMed  CAS  Google Scholar 

  • Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S, Martinez AC (2001) Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98(17):9642–9647

    PubMed  CAS  Google Scholar 

  • Goujon C, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2006) With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIV(MAC). Gene Ther 13(12):991–994

    PubMed  CAS  Google Scholar 

  • Goujon C, Riviere L, Jarrosson-Wuilleme L, Bernaud J, Rigal D, Darlix JL, Cimarelli A (2007) SIVSM/HIV-2 Vpx proteins promote retroviral escape from a proteasome-dependent restriction pathway present in human dendritic cells. Retrovirology 4:2

    PubMed  Google Scholar 

  • Gould SJ, Booth AM, Hildreth JE (2003) The Trojan exosome hypothesis. Proc Natl Acad Sci U S A 100(19):10592–10597

    PubMed  CAS  Google Scholar 

  • Gracheva EV, Samovilova NN, Golovanova NK, Andreeva ER, Andrianova IV, Tararak EM, Prokazova NV (2007) Activation of ganglioside GM3 biosynthesis in human monocyte/macrophages during culturing in vitro. Biochemistry (Mosc) 72(7):772–777

    CAS  Google Scholar 

  • Granelli-Piperno A, Pope M, Inaba K, Steinman RM (1995) Coexpression of NF-kappa B/Rel and Sp1 transcription factors in human immunodeficiency virus 1-induced, dendritic cell-T-cell syncytia. Proc Natl Acad Sci U S A 92(24):10944–10948

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Chen D, Moser B, Steinman RM (1997) The HIV-1 life cycle is blocked at two different points in mature dendritic cells. Adv Exp Med Biol 417:415–419

    PubMed  CAS  Google Scholar 

  • Grassme H, Riehle A, Wilker B, Gulbins E (2005) Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 280(28):26256–26262

    PubMed  CAS  Google Scholar 

  • Gummuluru S, Rogel M, Stamatatos L, Emerman M (2003) Binding of human immunodeficiency virus type 1 to immature dendritic cells can occur independently of DC-SIGN and mannose binding C-type lectin receptors via a cholesterol-dependent pathway. J Virol 77(23):12865–12874

    PubMed  CAS  Google Scholar 

  • Guo Y, Feinberg H, Conroy E, Mitchell DA, Alvarez R, Blixt O, Taylor ME, Weis WI, Drickamer K (2004) Structural basis for distinct ligand-binding and targeting properties of the receptors DC-SIGN and DC-SIGNR. Nat Struct Mol Biol 11(7):591–598

    PubMed  CAS  Google Scholar 

  • Hakomori S (1990) Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. J Biol Chem 265(31):18713–18716

    PubMed  CAS  Google Scholar 

  • Hakomori S, Handa K (2002) Glycosphingolipid-dependent cross-talk between glycosynapses interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS Lett 531(1):88–92

    PubMed  CAS  Google Scholar 

  • Hakomori S, Yamamura S, Handa AK (1998) Signal transduction through glyco(sphingo)lipids. Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann N Y Acad Sci 845:1–10

    PubMed  CAS  Google Scholar 

  • Hammache D, Yahi N, Maresca M, Pieroni G, Fantini J (1999) Human erythrocyte glycosphingolipids as alternative cofactors for human immunodeficiency virus type 1 (HIV-1) entry: evidence for CD4-induced interactions between HIV-1 gp120 and reconstituted membrane microdomains of glycosphingolipids (Gb3 and GM3). J Virol 73(6):5244–5248

    PubMed  CAS  Google Scholar 

  • Haslam SM, Julien S, Burchell JM, Monk CR, Ceroni A, Garden OA, Dell A (2008) Characterizing the glycome of the mammalian immune system. Immunol Cell Biol 86(7):564–573

    PubMed  CAS  Google Scholar 

  • Hatch SC, Archer J, Gummuluru S (2009) Glycosphingolipid composition of human immunodeficiency virus type 1 (HIV-1) particles is a crucial determinant for dendritic cell-mediated HIV-1 trans-infection. J Virol 83(8):3496–3506

    PubMed  CAS  Google Scholar 

  • Hladik F, McElrath MJ (2008) Setting the stage: host invasion by HIV. Nat Rev Immunol 8(6):447–457

    PubMed  CAS  Google Scholar 

  • Hladik F, Sakchalathorn P, Ballweber L, Lentz G, Fialkow M, Eschenbach D, McElrath MJ (2007) Initial events in establishing vaginal entry and infection by human immunodeficiency virus type-1. Immunity 26(2):257–270

    PubMed  CAS  Google Scholar 

  • Hosmalin A, McIlroy D, Cheynier R, Clauvel JP, Oksenhendler E, Wain-Hobson S, Debre P, Autran B (1995) Splenic interdigitating dendritic cells in humans: characterization and HIV infection frequency in vivo. Adv Exp Med Biol 378:439–441

    PubMed  CAS  Google Scholar 

  • Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M, Srivastava S, Florens L, Washburn MP, Skowronski J (2011) Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474(7353):658–661

    PubMed  CAS  Google Scholar 

  • Hug P, Lin HM, Korte T, Xiao X, Dimitrov DS, Wang JM, Puri A, Blumenthal R (2000) Glycosphingolipids promote entry of a broad range of human immunodeficiency virus type 1 isolates into cell lines expressing CD4, CXCR4, and/or CCR5. J Virol 74(14):6377–6385

    PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Blanco J, Erkizia I, Fernandez-Figueras MT, Borras FE, Naranjo-Gomez M, Bofill M, Ruiz L, Clotet B, Martinez-Picado J (2007) Maturation of blood-derived dendritic cells enhances human immunodeficiency virus type 1 capture and transmission. J Virol 81(14):7559–7570

    PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Archer J, Hatch SC, Erkizia I, Blanco J, Borras FE, Puertas MC, Connor JH, Fernandez-Figueras MT, Moore L, Clotet B, Gummuluru S, Martinez-Picado J (2009) Capture and transfer of HIV-1 particles by mature dendritic cells converges with the exosome-dissemination pathway. Blood 113(12):2732–2741

    PubMed  CAS  Google Scholar 

  • Izquierdo-Useros N, Naranjo-Gomez M, Erkizia I, Puertas MC, Borras FE, Blanco J, Martinez-Picado J (2010) HIV and mature dendritic cells: Trojan exosomes riding the Trojan horse? PLoS Pathog 6(3):e1000740

    PubMed  Google Scholar 

  • Jameson B, Baribaud F, Pohlmann S, Ghavimi D, Mortari F, Doms RW, Iwasaki A (2002) Expression of DC-SIGN by dendritic cells of intestinal and genital mucosae in humans and rhesus macaques. J Virol 76(4):1866–1875

    PubMed  CAS  Google Scholar 

  • Janich P, Corbeil D (2007) GM1 and GM3 gangliosides highlight distinct lipid microdomains within the apical domain of epithelial cells. FEBS Lett 581(9):1783–1787

    PubMed  CAS  Google Scholar 

  • Khurana S, Krementsov DN, de Parseval A, Elder JH, Foti M, Thali M (2007) Human immunodeficiency virus type 1 and influenza virus exit via different membrane microdomains. J Virol 81(22):12630–12640

    PubMed  CAS  Google Scholar 

  • Kolter T, Proia RL, Sandhoff K (2002) Combinatorial ganglioside biosynthesis. J Biol Chem 277(29):25859–25862

    PubMed  CAS  Google Scholar 

  • Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16(1):135–144

    PubMed  CAS  Google Scholar 

  • Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C, Segeral E, Yatim A, Emiliani S, Schwartz O, Benkirane M (2011) SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474(7353):654–657

    PubMed  CAS  Google Scholar 

  • Lahouassa H, Daddacha W, Hofmann H, Ayinde D, Logue EC, Dragin L, Bloch N, Maudet C, Bertrand M, Gramberg T, Pancino G, Priet S, Canard B, Laguette N, Benkirane M, Transy C, Landau NR, Kim B, Margottin-Goguet F (2012) SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 13(3):223–228

    PubMed  CAS  Google Scholar 

  • Lambert AA, Gilbert C, Richard M, Beaulieu AD, Tremblay MJ (2008) The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways. Blood 112(4):1299–1307

    PubMed  CAS  Google Scholar 

  • Lee B, Sharron M, Montaner LJ, Weissman D, Doms RW (1999) Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages. Proc Natl Acad Sci U S A 96(9):5215–5220

    PubMed  CAS  Google Scholar 

  • Lehmann M, Rocha S, Mangeat B, Blanchet F, Uji IH, Hofkens J, Piguet V (2011) Quantitative multicolor super-resolution microscopy reveals tetherin HIV-1 interaction. PLoS Pathog 7(12):e1002456

    PubMed  CAS  Google Scholar 

  • Leung K, Kim JO, Ganesh L, Kabat J, Schwartz O, Nabel GJ (2008) HIV-1 assembly: viral glycoproteins segregate quantally to lipid rafts that associate individually with HIV-1 capsids and virions. Cell Host Microbe 3(5):285–292

    PubMed  CAS  Google Scholar 

  • Li Y, Thapa P, Hawke D, Kondo Y, Furukawa K, Hsu FF, Adlercreutz D, Weadge J, Palcic MM, Wang PG, Levery SB, Zhou D (2009) Immunologic glycosphingolipidomics and NKT cell development in mouse thymus. J Proteome Res 8(6):2740–2751

    PubMed  CAS  Google Scholar 

  • Lim ES, Fregoso OI, McCoy CO, Matsen FA, Malik HS, Emerman M (2012) The ability of primate lentiviruses to degrade the monocyte restriction factor SAMHD1 preceded the birth of the viral accessory protein Vpx. Cell Host Microbe 11(2):194–204

    PubMed  CAS  Google Scholar 

  • Lin G, Simmons G, Pohlmann S, Baribaud F, Ni H, Leslie GJ, Haggarty BS, Bates P, Weissman D, Hoxie JA, Doms RW (2003) Differential N-linked glycosylation of human immunodeficiency virus and Ebola virus envelope glycoproteins modulates interactions with DC-SIGN and DC-SIGNR. J Virol 77(2):1337–1346

    PubMed  CAS  Google Scholar 

  • Lindwasser OW, Resh MD (2002) Myristoylation as a target for inhibiting HIV assembly: unsaturated fatty acids block viral budding. Proc Natl Acad Sci U S A 99(20):13037–13042

    PubMed  CAS  Google Scholar 

  • Lingwood CA, Branch DR (2011) The role of glycosphingolipids in HIV/AIDS. Discov Med 11(59):303–313

    PubMed  Google Scholar 

  • Liu YJ (2005) IPC: professional type 1 interferon-producing cells and plasmacytoid dendritic cell precursors. Annu Rev Immunol 23:275–306

    PubMed  CAS  Google Scholar 

  • Lore K, Smed-Sorensen A, Vasudevan J, Mascola JR, Koup RA (2005) Myeloid and plasmacytoid dendritic cells transfer HIV-1 preferentially to antigen-specific CD4+ T cells. J Exp Med 201(12):2023–2033

    PubMed  CAS  Google Scholar 

  • Lund N, Branch DR, Mylvaganam M, Chark D, Ma XZ, Sakac D, Binnington B, Fantini J, Puri A, Blumenthal R, Lingwood CA (2006) A novel soluble mimic of the glycolipid, globotriaosyl ceramide inhibits HIV infection. AIDS 20(3):333–343

    PubMed  CAS  Google Scholar 

  • Magerus-Chatinet A, Yu H, Garcia S, Ducloux E, Terris B, Bomsel M (2007) Galactosyl ceramide expressed on dendritic cells can mediate HIV-1 transfer from monocyte derived dendritic cells to autologous T cells. Virology 362(1):67–74

    PubMed  CAS  Google Scholar 

  • Magnus C, Rusert P, Bonhoeffer S, Trkola A, Regoes RR (2009) Estimating the stoichiometry of human immunodeficiency virus entry. J Virol 83(3):1523–1531

    PubMed  CAS  Google Scholar 

  • Manel N, Hogstad B, Wang Y, Levy DE, Unutmaz D, Littman DR (2010) A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 467(7312):214–217

    PubMed  CAS  Google Scholar 

  • McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297

    PubMed  CAS  Google Scholar 

  • McIlroy D, Autran B, Cheynier R, Wain-Hobson S, Clauvel JP, Oksenhendler E, Debre P, Hosmalin A (1995) Infection frequency of dendritic cells and CD4+ T lymphocytes in spleens of human immunodeficiency virus-positive patients. J Virol 69(8):4737–4745

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    PubMed  CAS  Google Scholar 

  • Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137(3):433–444

    PubMed  CAS  Google Scholar 

  • Mondor I, Ugolini S, Sattentau QJ (1998) Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4 independent and gp120 dependent and requires cell surface heparans. J Virol 72(5):3623–3634

    PubMed  CAS  Google Scholar 

  • Moore ML, Chi MH, Goleniewska K, Durbin JE, Peebles RS Jr (2008) Differential regulation of GM1 and asialo-GM1 expression by T cells and natural killer (NK) cells in respiratory syncytial virus infection. Viral Immunol 21(3):327–339

    PubMed  CAS  Google Scholar 

  • Moris A, Nobile C, Buseyne F, Porrot F, Abastado JP, Schwartz O (2004) DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation. Blood 103(7):2648–2654

    PubMed  CAS  Google Scholar 

  • Moris A, Pajot A, Blanchet F, Guivel-Benhassine F, Salcedo M, Schwartz O (2006) Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood 108(5):1643–1651

    PubMed  CAS  Google Scholar 

  • Nagafuku M, Okuyama K, Onimaru Y, Suzuki A, Odagiri Y, Yamashita T, Iwasaki K, Fujiwara M, Takayanagi M, Ohno I, Inokuchi J (2012) CD4 and CD8 T cells require different membrane gangliosides for activation. Proc Natl Acad Sci U S A 109(6):E336–E342

    PubMed  CAS  Google Scholar 

  • Nehete PN, Vela EM, Hossain MM, Sarkar AK, Yahi N, Fantini J, Sastry KJ (2002) A post-CD4-binding step involving interaction of the V3 region of viral gp120 with host cell surface glycosphingolipids is common to entry and infection by diverse HIV-1 strains. Antiviral Res 56(3):233–251

    PubMed  CAS  Google Scholar 

  • Neil SJ, Sandrin V, Sundquist WI, Bieniasz PD (2007) An interferon-alpha-induced tethering mechanism inhibits HIV-1 and Ebola virus particle release but is counteracted by the HIV-1 Vpu protein. Cell Host Microbe 2(3):193–203

    PubMed  CAS  Google Scholar 

  • Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430

    PubMed  CAS  Google Scholar 

  • Nguyen DH, Hildreth JE (2000) Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J Virol 74(7):3264–3272

    PubMed  CAS  Google Scholar 

  • Nguyen DH, Giri B, Collins G, Taub DD (2005) Dynamic reorganization of chemokine receptors, cholesterol, lipid rafts, and adhesion molecules to sites of CD4 engagement. Exp Cell Res 304(2):559–569

    PubMed  CAS  Google Scholar 

  • Nojiri H, Takaku F, Terui Y, Miura Y, Saito M (1986) Ganglioside GM3: an acidic membrane component that increases during macrophage-like cell differentiation can induce monocytic differentiation of human myeloid and monocytoid leukemic cell lines HL-60 and U937. Proc Natl Acad Sci U S A 83(3):782–786

    PubMed  CAS  Google Scholar 

  • Nudelman E, Kannagi R, Hakomori S, Parsons M, Lipinski M, Wiels J, Fellous M, Tursz T (1983) A glycolipid antigen associated with Burkitt lymphoma defined by a monoclonal antibody. Science 220(4596):509–511

    PubMed  CAS  Google Scholar 

  • Okuda T, Tokuda N, Numata S, Ito M, Ohta M, Kawamura K, Wiels J, Urano T, Tajima O, Furukawa K, Furukawa K (2006) Targeted disruption of Gb3/CD77 synthase gene resulted in the complete deletion of globo-series glycosphingolipids and loss of sensitivity to verotoxins. J Biol Chem 281(15):10230–10235

    PubMed  CAS  Google Scholar 

  • Ono A, Freed EO (1999) Binding of human immunodeficiency virus type 1 Gag to membrane: role of the matrix amino terminus. J Virol 73(5):4136–4144

    PubMed  CAS  Google Scholar 

  • Ono A, Freed EO (2001) Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc Natl Acad Sci U S A 98(24):13925–13930

    PubMed  CAS  Google Scholar 

  • Ono A, Freed EO (2005) Role of lipid rafts in virus replication. Adv Virus Res 64:311–358

    PubMed  CAS  Google Scholar 

  • Ono A, Ablan SD, Lockett SJ, Nagashima K, Freed EO (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 101(41):14889–14894

    PubMed  CAS  Google Scholar 

  • Pantaleo G, Graziosi C, Demarest JF, Butini L, Montroni M, Fox CH, Orenstein JM, Kotler DP, Fauci AS (1993) HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease [see comments]. Nature 362(6418):355–358

    PubMed  CAS  Google Scholar 

  • Pichlmair A, Reis e Sousa C (2007) Innate recognition of viruses. Immunity 27(3):370–383

    PubMed  CAS  Google Scholar 

  • Pion M, Granelli-Piperno A, Mangeat B, Stalder R, Correa R, Steinman RM, Piguet V (2006) APOBEC3G/3F mediates intrinsic resistance of monocyte-derived dendritic cells to HIV-1 infection. J Exp Med 203(13):2887–2893

    PubMed  CAS  Google Scholar 

  • Pion M, Stalder R, Correa R, Mangeat B, Towers GJ, Piguet V (2007) Identification of an arsenic-sensitive block to primate lentiviral infection of human dendritic cells. J Virol 81(21):12086–12090

    PubMed  CAS  Google Scholar 

  • Pope M, Betjes MG, Romani N, Hirmand H, Cameron PU, Hoffman L, Gezelter S, Schuler G, Steinman RM (1994) Conjugates of dendritic cells and memory T lymphocytes from skin facilitate productive infection with HIV-1. Cell 78(3):389–398

    PubMed  CAS  Google Scholar 

  • Powell RD, Holland PJ, Hollis T, Perrino FW (2011) Aicardi-Goutieres syndrome gene and HIV-1 restriction factor SAMHD1 is a dGTP-regulated deoxynucleotide triphosphohydrolase. J Biol Chem 286(51):43596–43600

    PubMed  CAS  Google Scholar 

  • Puri A, Hug P, Jernigan K, Barchi J, Kim HY, Hamilton J, Wiels J, Murray GJ, Brady RO, Blumenthal R (1998) The neutral glycosphingolipid globotriaosylceramide promotes fusion mediated by a CD4-dependent CXCR4-utilizing HIV type 1 envelope glycoprotein. Proc Natl Acad Sci U S A 95(24):14435–14440

    PubMed  CAS  Google Scholar 

  • Puri A, Hug P, Jernigan K, Rose P, Blumenthal R (1999) Role of glycosphingolipids in HIV-1 entry: requirement of globotriosylceramide (Gb3) in CD4/CXCR4-dependent fusion. Biosci Rep 19(4):317–325

    PubMed  CAS  Google Scholar 

  • Puri A, Rawat SS, Lin HM, Finnegan CM, Mikovits J, Ruscetti FW, Blumenthal R (2004) An inhibitor of glycosphingolipid metabolism blocks HIV-1 infection of primary T-cells. AIDS 18(6):849–858

    PubMed  CAS  Google Scholar 

  • Puryear WB, Yu X, Ramirez NP, Reinhard BM, Gummuluru S (2012) HIV-1 incorporation of host-cell-derived glycosphingolipid GM3 allows for capture by mature dendritic cells. Proc Natl Acad Sci U S A 109(19):7475–7480

    PubMed  CAS  Google Scholar 

  • Ramegowda B, Tesh VL (1996) Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect Immun 64(4):1173–1180

    PubMed  CAS  Google Scholar 

  • Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA (1998) Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. Science 282(5388):480–483

    PubMed  CAS  Google Scholar 

  • Rawat SS, Johnson BT, Puri A (2005) Sphingolipids: modulators of HIV-1 infection and pathogenesis. Biosci Rep 25(5–6):329–343

    PubMed  CAS  Google Scholar 

  • Record M, Subra C, Silvente-Poirot S, Poirot M (2011) Exosomes as intercellular signalosomes and pharmacological effectors. Biochem Pharmacol 81(10):1171–1182

    PubMed  CAS  Google Scholar 

  • Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103(30):11364–11369

    PubMed  CAS  Google Scholar 

  • Sabado RL, O’Brien M, Subedi A, Qin L, Hu N, Taylor E, Dibben O, Stacey A, Fellay J, Shianna KV, Siegal F, Shodell M, Shah K, Larsson M, Lifson J, Nadas A, Marmor M, Hutt R, Margolis D, Garmon D, Markowitz M, Valentine F, Borrow P, Bhardwaj N (2010) Evidence of dysregulation of dendritic cells in primary HIV infection. Blood 116(19):3839–3852

    PubMed  CAS  Google Scholar 

  • Saez-Cirion A, Nir S, Lorizate M, Agirre A, Cruz A, Perez-Gil J, Nieva JL (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 277(24):21776–21785

    PubMed  CAS  Google Scholar 

  • Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118

    PubMed  CAS  Google Scholar 

  • Savina A, Jancic C, Hugues S, Guermonprez P, Vargas P, Moura IC, Lennon-Duménil A-M, Seabra MC, Raposo G, Amigorena S (2006) NOX2 controls phagosomal pH to regulate antigen processing during crosspresentation by dendritic cells. Cell 126(1):205–218

    PubMed  CAS  Google Scholar 

  • Schwarz A, Futerman AH (1997) Determination of the localization of gangliosides using anti-ganglioside antibodies: comparison of fixation methods. J Histochem Cytochem 45(4):611–618

    PubMed  CAS  Google Scholar 

  • Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699

    PubMed  CAS  Google Scholar 

  • Smed-Sorensen A, Lore K, Vasudevan J, Louder MK, Andersson J, Mascola JR, Spetz AL, Koup RA (2005) Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J Virol 79(14):8861–8869

    PubMed  Google Scholar 

  • Smith AL, Ganesh L, Leung K, Jongstra-Bilen J, Jongstra J, Nabel GJ (2007) Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells. J Exp Med 204(2):421–430

    PubMed  CAS  Google Scholar 

  • Sorice M, Garofalo T, Sansolini T, Griggi T, Circella A, Massetti A, Tai T, Pavan A (1996) Overexpression of monosialoganglioside GM3 on lymphocyte plasma membrane in patients with HIV infection. J Acquir Immune Defic Syndr Hum Retrovirol 12(2):112–119

    PubMed  CAS  Google Scholar 

  • Spearman P, Wang JJ, Vander Heyden N, Ratner L (1994) Identification of human immunodeficiency virus type 1 Gag protein domains essential to membrane binding and particle assembly. J Virol 68(5):3232–3242

    PubMed  CAS  Google Scholar 

  • Suomalainen M (2002) Lipid rafts and assembly of enveloped viruses. Traffic 3(10):705–709

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Matsunaga M, Matsumoto M (1985) N-Acetylneuraminyllactosylceramide, GM3-NeuAc, a new influenza A virus receptor which mediates the adsorption-fusion process of viral infection. Binding specificity of influenza virus A/Aichi/2/68 (H3N2) to membrane-associated GM3 with different molecular species of sialic acid. J Biol Chem 260(3):1362–1365

    PubMed  CAS  Google Scholar 

  • Tagami S, Inokuchi Ji J, Kabayama K, Yoshimura H, Kitamura F, Uemura S, Ogawa C, Ishii A, Saito M, Ohtsuka Y, Sakaue S, Igarashi Y (2002) Ganglioside GM3 participates in the pathological conditions of insulin resistance. J Biol Chem 277(5):3085–3092

    PubMed  CAS  Google Scholar 

  • Tsai B, Gilbert JM, Stehle T, Lencer W, Benjamin TL, Rapoport TA (2003) Gangliosides are receptors for murine polyoma virus and SV40. EMBO J 22(17):4346–4355

    PubMed  CAS  Google Scholar 

  • Turville SG, Arthos J, MacDonald K, Lynch G, Naif H, Clark G, Hart D, Cunningham AL (2001) HIV gp120 receptors on human dendritic cells. Blood 98(8):2482–2488

    PubMed  CAS  Google Scholar 

  • Turville SG, Cameron PU, Handley A, Lin G, Pohlmann S, Doms RW, Cunningham AL (2002) Diversity of receptors binding HIV on dendritic cell subsets. Nat Immunol 3(10):975–983

    PubMed  CAS  Google Scholar 

  • Turville SG, Santos JJ, Frank I, Cameron PU, Wilkinson J, Miranda-Saksena M, Dable J, Stossel H, Romani N, Piatak M Jr, Lifson JD, Pope M, Cunningham AL (2004) Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6):2170–2179

    PubMed  CAS  Google Scholar 

  • Uemura S, Yoshida S, Shishido F, Inokuchi J (2009) The cytoplasmic tail of GM3 synthase defines its subcellular localization, stability, and in vivo activity. Mol Biol Cell 20(13):3088–3100

    PubMed  CAS  Google Scholar 

  • Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3(4):245–252

    PubMed  Google Scholar 

  • Varki A, Cummings R, Esko J, Freeze H, Stanley P, Bertozzi C, Hart G, Etzler M (2008) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Waheed AA, Freed EO (2010) The role of lipids in retrovirus replication. Viruses 2(5):1146–1180

    PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ, Wu L (2007) Functionally distinct transmission of human immunodeficiency virus type 1 mediated by immature and mature dendritic cells. J Virol 81(17):8933–8943

    PubMed  CAS  Google Scholar 

  • Weissman D, Li Y, Orenstein JM, Fauci AS (1995) Both a precursor and a mature population of dendritic cells can bind HIV. However, only the mature population that expresses CD80 can pass infection to unstimulated CD4+ T cells. J Immunol 155(8):4111–4117

    PubMed  CAS  Google Scholar 

  • Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103(3):738–743

    PubMed  CAS  Google Scholar 

  • Wu L, KewalRamani VN (2006) Dendritic-cell interactions with HIV: infection and viral dissemination. Nat Rev Immunol 6(11):859–868

    PubMed  CAS  Google Scholar 

  • Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W, Hoernschemeyer J, Slot JW, Geuze HJ, Stoorvogel W (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278(13):10963–10972

    PubMed  CAS  Google Scholar 

  • Xu Y-H, Barnes S, Sun Y, Grabowski GA (2010) Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 51(7):1643–1675

    PubMed  CAS  Google Scholar 

  • Yamaji T, Kumagai K, Tomishige N, Hanada K (2008) Two sphingolipid transfer proteins, CERT and FAPP2: their roles in sphingolipid metabolism. IUBMB Life 60(8):511–518

    PubMed  CAS  Google Scholar 

  • Yang X, Kurteva S, Ren X, Lee S, Sodroski J (2005) Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J Virol 79(19):12132–12147

    PubMed  CAS  Google Scholar 

  • Yu HJ, Reuter MA, McDonald D (2008) HIV traffics through a specialized, surface-accessible intracellular compartment during trans-infection of T cells by mature dendritic cells. PLoS Pathog 4(8):e1000134

    PubMed  Google Scholar 

  • Zeidan YH, Hannun YA (2007) Translational aspects of sphingolipid metabolism. Trends Mol Med 13(8):327–336

    PubMed  CAS  Google Scholar 

  • Zhou W, Parent LJ, Wills JW, Resh MD (1994) Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J Virol 68(4):2556–2569

    PubMed  CAS  Google Scholar 

  • Zhu P, Liu J, Bess J Jr, Chertova E, Lifson JD, Grise H, Ofek GA, Taylor KA, Roux KH (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441(7095):847–852

    PubMed  CAS  Google Scholar 

  • Zhu Y, Gumlaw N, Karman J, Zhao H, Zhang J, Jiang J, Maniatis P, Edling A, Chuang W-L, Siegel C, Shayman JA, Kaplan J, Jiang C, Cheng SH (2011) Lowering glycosphingolipid levels in CD4+ T cells attenuates T cell receptor signaling, cytokine production, and differentiation to the Th17 lineage. J Biol Chem 286(17):14787–14794

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors’ work is supported in part by grants from National Institutes of Allergy and Infectious Diseases (AI064099 and AI081596 (S.G.)). W.B.P. is supported by an NRSA F32 AI084558 fellowship and Research Training in Immunology 5T32AI007309-22 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suryaram Gummuluru Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Puryear, W.B., Gummuluru, S. (2012). Role of Glycosphingolipids in Dendritic Cell-Mediated HIV-1 Trans-infection. In: Wu, L., Schwartz, O. (eds) HIV Interactions with Dendritic Cells. Advances in Experimental Medicine and Biology, vol 762. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4433-6_5

Download citation

Publish with us

Policies and ethics