Skip to main content

Bioaugmentation with Pseudomonas Stutzeri KC for Carbon Tetrachloride Remediation

  • Chapter
  • First Online:
Book cover Bioaugmentation for Groundwater Remediation

Abstract

Bioaugmentation with denitrifying Pseudomonas stutzeri strain KC is a field-demonstrated strategy to treat groundwater contaminated with carbon tetrachloride (CT) to concentrations below current regulatory criteria. The key to this strategy is that strain KC secretes a compound (pyridine-2,6-bis-thiocarboxylate, or PDTC) that promotes chemical dechlorination of CT outside the cell. Strain KC is a highly motile (chemotactic toward nitrate) facultative aerobe capable of complete denitrification. Unlike other denitrifiers, however, strain KC degrades CT without producing chloroform (CF) and does so faster than competing microbial populations that produce CF, thus minimizing or avoiding CF formation. Because bioaugmentation with strain KC is accomplished with nitrate in a denitrifying environment and requires relatively low amounts of added organic carbon, it avoids side effects that result from biostimulation with large amounts of organic carbon, minimizing accumulation of volatile fatty acids, hydrogen sulfide (H2S), ferrous iron, carbon disulfide, ammonium, methane and biomass. This chapter summarizes the rationale behind this unique bioaugmentation strategy, and reviews the laboratory and field research that led to its development and validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asmus K-D, Bahnemann D, Krischer K, Lal M, Mönig G. 1985. One-electron induced degradation of halogenated methanes and ethanes in oxygenated and anoxic aqueous solutions. Life Chem Rep 3:1–15.

    CAS  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Registry). 2005. US Department of Health and Human Services. ToxFaqs for Carbon Tetrachloride. CAS#: 56-23-5. August.

    Google Scholar 

  • Begley TP, Xi J, Kinsland C, Taylor SM, McLafferty FW. 1999. The enzymology of sulfur activation during thiamin and biotin biosynthesis. Curr Opin Chem Biol 3:623–629.

    Article  CAS  Google Scholar 

  • Blickling S, Renner C, Laber B, Pohlenz HD, Holak TA, Huber R. 1997. Reaction mechanism of Escherichia coli dihydrodipicolinate synthase investigated by X-ray crystallography and NMR spectroscopy. Biochem 36:24–33.

    Article  CAS  Google Scholar 

  • Cortese M, Paszczynski A, Lewis TA, Sebat J, Crawford RL. 2002. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. BioMetals 15:103–120.

    Article  CAS  Google Scholar 

  • Criddle CS, DeWitt JT, Grbic-Galic D, McCarty PL. 1990, Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol 56:3240–3246.

    CAS  Google Scholar 

  • Dybas M, Tatara G, Criddle CS. 1995a. Localization and characterization of the carbon tetrachloride transformation activity of Pseudomonas sp. strain KC. Appl Environ Microbiol 61:758–762.

    CAS  Google Scholar 

  • Dybas M, Tatara G, Knoll W, Mayotte T, Criddle CS. 1995b. Niche adjustment for bioaugmentation with Pseudomonas sp. strain KC. In Hinchee RE, Frederickson J, Alleman BC, eds, Bioaugmentation for Site Remediation. Bioremediation Series 3(3), Battelle Press, Columbus, OH, USA, pp 77–84.

    Google Scholar 

  • Dybas MJ, Barcelona M, Bezborodnikov S, Davies S, Forney L, Kawka O, Mayotte T, Sepulveda-Torres L, Smalla K, Sneathen M, Tiedje J, Voice T, Wiggert D, Witt ME, Criddle CS. 1998. Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer. Environ Sci Technol 32:3598–3611.

    Article  CAS  Google Scholar 

  • Dybas MJ, Hyndman DW, Heine R, Linning K, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Artuz R, Criddle CS. 2002. Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644.

    Article  CAS  Google Scholar 

  • Fu S, Boonchayaanant B, Tang W, Trost BM, Criddle CS. 2009. Simple menaquinones reduce carbon tetrachloride and iron (III). Biodegradation 20:109–16.

    Article  CAS  Google Scholar 

  • Gantzer CJ, Wackett LP. 1991. Reductive dechlorination catalyzed by bacterial transition-metal coenzymes. Environ Sci Technol 25:715–722.

    Article  CAS  Google Scholar 

  • Godert AM, Jin M, McLafferty FW, Begley TP. 2007. Biosynthesis of the thioquinolobactin siderophore: An interesting variation on sulfur transfer. J Bacteriol 189:2941–2944.

    Article  CAS  Google Scholar 

  • Hammer O, Dysthe DK, Lelu B, Lund H, Meakin P, Jamtveit B. 2008. Calcite precipitation instability under laminar, open channel flow. Geochimica et Cosmochimica Acta 72:5009–5021.

    Article  CAS  Google Scholar 

  • Hashsham SA, Scholze R, Freedman DL. 1995. Cobalamin-enhanced anaerobic biotransformation of carbon tetrachloride. Environ Sci Technol 29:2856–2863.

    Article  CAS  Google Scholar 

  • Harvey RW. 1991. Parameters involved in modeling transport of bacteria in contaminated aquifers. In Abriola L, ed, Groundwater Contamination. Oxfordshire, UK, IAHS Press, No. 185, p 75–82.

    Google Scholar 

  • Hildebrand U, Ockels W, Lex J, Budzikiewicz H. 1983. Zur Struktur eines 1:1-Adduktes von Pyridin-2,6-Dicarbothiosäure und Pyridin. Phosphorus Sulfur 16:361–364.

    Article  CAS  Google Scholar 

  • Hildebrand U, Taraz K, Budzikiewicz H. 1986. 6-(Hydroxythio)carbonylpyridine-2-carboxylic acid and pyridine-2-carboxylic-6-monothiocarboxylic acid as intermediates in the biosynthesis of pyridine-2,6-di(monothiocarboxylic acid) from pyridine-2,6-dicarboxylic acid. Z. Naturforsch 41c:691694.

    Google Scholar 

  • Hyndman DW, Dybas MJ, Forney L, Heine R, Mayotte T, Phanikumar MS, Tatara G, Tiedje J, Voice T, Wallace R, Wiggert D, Zhao X, Criddle CS. 2000. Hydraulic characterization and design of a full-scale biocurtain. Ground Water 38:462–474.

    Article  CAS  Google Scholar 

  • Jeffers PM, Ward LM, Woytowitch LM, Wolfe NL. 1989. Homogeneous hydrolysis rate constants for selected chlorinated methanes, ethanes, ethenes, and propanes. Environ Sci Technol 23:965–969.

    Article  CAS  Google Scholar 

  • Knoll WH. 1994. Factors influencing the competitive advantage of Pseudomonas sp. strain KC for subsequent remediation of a carbon tetrachloride impacted aquifer. MS Thesis. Department of Civil and Environmental Engineering. Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Kriegman-King MR, Reinhard M. 1992. Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite. Environ Sci Technol 26:2198–2206.

    Article  CAS  Google Scholar 

  • Lawrence JG, Roth JR. 1996. Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics 143:1843–1860.

    CAS  Google Scholar 

  • Leach L, Lewis TA. 2006. Idenepsication and characterization of Pseudomonas membrane transporters necessary for utilization of the siderophore Pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Microbiol 152:3157–3166.

    Article  CAS  Google Scholar 

  • Lee C-H, Lewis TA, PaszczynskiA, Crawford RL. 1999. Idenepsication of an extracellular catalyst of carbon tetrachloride dehalogenation from Pseudomonas stutzeri strain KC as pyridine-2,6-bis(thiocarboxylate). Biochem Biophys Res Commun 261:562–566; erratum 265:770.

    Google Scholar 

  • Leimkühler S, Rajagopalan KV. 2001. A sulfurtransferase is required in the transfer of cysteine sulfur in the in vitro synthesis of molybdopterin from precursor Z in Escherichia coli. J Biol Chem 276:22024–22031.

    Article  Google Scholar 

  • Lewis TA, Crawford RL. 1995. Transformation of carbon tetrachloride via sulfur and oxygen substitution by Pseudomonas sp. strain KC. J Bacteriol 177:2204–2208.

    CAS  Google Scholar 

  • Lewis TA, Cortese M, Sebat J, Green T, Lee C-H, Crawford RL. 2000. A Pseudomonas stutzeri gene cluster encoding the biosynthesis of the CCl4-dechlorination agent pyridine-2,6-bis(thiocarboxylic acid). Environ Microbiol 2:407–416.

    Article  CAS  Google Scholar 

  • Lewis TA, Paszczynski A, Gordon-Wylie S, Jeedigunta S, Lee C-H, Crawford RL. 2001. Carbon tetrachloride dechlorination by the bacterial transition metal chelator pyridine-2,6-bis(thiocarboxylic acid). Environ Sci Technol 35:552–559.

    Article  CAS  Google Scholar 

  • Lewis TA, Leach L, Morales S, Austin PR, Hartwell HJ, Kaplan BJ, Forker C, Meyer J-M. 2004. Physiological and molecular genetic evaluation of the dechlorination agent, pyridine-2,6-bis(monothiocarboxylic acid) (PDTC) as a secondary siderophore of Pseudomonas. Environ Microbiol 6:159–169.

    Article  CAS  Google Scholar 

  • Martin RE, Bouwer EJ, Hanna LM. 1992. Application of clean-bed filtration theory to bacterial deposition in porous media. Environ Sci Technol 26:1053–1058.

    Article  CAS  Google Scholar 

  • Matthijs S, Baysse C, Koedam N, Tehrani KA, Verheyden L, Budzikiewicz H, Schäfer M, Hoorelbeke B, Meyer J-M, De Greve H, and Cornelis P. 2004. The Pseudomonas siderophore quinolobactin is synthesized from xanthurenic acid, an intermediate of the kynurenine pathway. Mol Microbiol 52:371–384.

    Article  CAS  Google Scholar 

  • Michel L, Gonzales N, Jagdeep S, Nguyen-Ngoc T, Reimmann C. 2005. PchR-box recognition by the AraC-type regulator PchR of Pseudomonas aeruginosa requires the siderophore pyochelin as an effector. Mol Microbiol 58:495–509.

    Article  CAS  Google Scholar 

  • Morales SE, Lewis TA. 2006. Transcriptional regulation of the pdt gene cluster of Pseudomonas stutzeri KC involves an Ara C/XylS family transcriptional activator (PdtC) and the cognate siderophore pyridine-2,6-bis(thiocarboxylic acid) (PDTC). Appl Environ Microbiol 72:6994–7002.

    Article  CAS  Google Scholar 

  • Neu MP, Matonic JH, Ruggiero CE, Scott BL. 2000. Structural characterization of a plutonium(IV) siderophore complex: Single-crystal structure of Pu-desferrioxamine E. Angew Chemie Int Ed Engl 39:1442–1444.

    Article  CAS  Google Scholar 

  • Neu MP, Johnson MT, Matonic JH, Scott BL. 2001. Actinide interactions with microbial chelators: The dioxobis[pyridine-2,6-bis(monothiocarboxylato0] uranium(VI) ion. Acta Cryst C57:240–242.

    CAS  Google Scholar 

  • Phanikumar MS, Hyndman DW, Criddle CS. 2002a. Biocurtain design using reactive transport models. Ground Water Monit Remediat 23:1–11.

    Google Scholar 

  • Phanikumar MS, Hyndman DW, Wiggert DC, Dybas MJ, Witt M, Criddle CS. 2002b. Simulation of microbial transport and carbon tetrachloride biodegradation in intermittently-fed aquifer columns. Water Resour Res 4:1–13.

    Google Scholar 

  • Phanikumar S, Hyndman DW, Zhao X, Dybas MJ. 2005. A three-dimensional model of microbial transport and bioremediation at the Schoolcraft, Michigan site. Water Resour Res 41, W05011, doi:10.1029/2004WR003376.

  • Picardal FW, Arnold RG, Couch H, Little AM, Smith ME. 1993. Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200. Appl Environ Microbiol 59:3763–3770.

    CAS  Google Scholar 

  • Poole K, McKay GA. 2003. Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to Rome. Front Biosci 8:661–686.

    Article  Google Scholar 

  • Radabaugh PD. 1998. Factors Influencing Transport of Pesudomonas stutzeri KC. Master Thesis, Department of Civil and Environmental Engineering, Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB. 1996a. Bacterial deposition in porous media related to the clean bed collision efficiency and to substratum blocking by attached cells. Environ Sci Technol 30:2869–2876.

    Google Scholar 

  • Rijnaarts HHM, Norde W, Bouwer EJ, Lyklema J, Zehnder AJB. 1996b. Bacterial deposition in porous media: Effects of cell-coating, substratum hydrophobicity, and electrolyte concentration. Environ Sci Technol 30:2877–2883.

    Article  CAS  Google Scholar 

  • Schaik S. 1983. a- and b-carbon substituent effect on SN2 reactivity: A valence bond approach. J Am Chem Soc 105:4359–4367.

    Article  Google Scholar 

  • Sebat J, Paszczynski A, Cortese M, Crawford RL. 2001. Antimicrobial properties of pyridine-2,6-dithiocarboxylic acid, a metal chelator produced by Pseudomonas spp. Appl Environ Microbiol 67:3934–3942.

    Article  CAS  Google Scholar 

  • Sepulveda-Torres LdC, Rajendran N, Dybas MJ, Criddle CS. 1999. Generation and initial characterization of Pseudomonas stutzeri KC mutants with impaired ability to degrade carbon tetrachloride. Arch Microbiol 171:424–429.

    Article  CAS  Google Scholar 

  • Sepulveda-Torres LdC, Huang A, Kim H, Criddle CS. 2002. Analysis of regulatory elements and genes required for carbon tetrachloride degradation in Pseudomonas stutzeri strain KC. J Mol Microbiol Biotechnol 4:151–161.

    CAS  Google Scholar 

  • Sneathen M. 1996. Theoretical and experimental competitiveness of Pseudomonas stutzeri KC. MS Thesis. Department of Civil and Environmental Engineering. Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Stolworthy JC, Paszczynski A, Korus RA, Crawford RL. 2001. Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by Pseudomonas stutzeri and Pseudomonas putida. Biodegradation 12:411–418.

    Article  CAS  Google Scholar 

  • Tatara GM. 1996. Physiology of Carbon Tetrachloride Transformation by Pseudomonas stutzeri KC. Doctoral Thesis. Department of Microbiology, Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Tatara GM, Dybas MJ, Criddle CS. 1993. Effects of medium and trace metals on kinetics of carbon tetrachloride transformation by Pseudomonas sp. strain KC. Appl Environ Microbiol 59:2126–2131.

    CAS  Google Scholar 

  • Tatara G, Dybas M, Criddle CS. 1995. Biofactor-mediated transformation of carbon tetrachloride by diverse cell types. In Hinchee RE, Leeson A, Semprini L, eds, Bioremediation of Chlorinated Solvents. Bioremediation Series 3(4), Battelle Press, Columbus, OH, USA, pp 69–76.

    Google Scholar 

  • Taylor SV, Kelleher NV, Kinsland C, Chiu H-J, Costello CA, Backstrom AD, McLafferty FD, Begley TP. 1998. Thiamin biosynthesis in Escherichia coli: Idenepsication of ThiS thiocarboxylate as the immediate sulfur donor in the thiazole formation. J Biol Chem 273:16555–16560.

    Article  CAS  Google Scholar 

  • Trimble J. 2000. Principles of Biochemical Toxicology. 3rd ed. CRC Press.

    Google Scholar 

  • USEPA (U.S. Environmental Protection Agency. 2009. National Priorities List. http://www.epa.gov/superfund/sites/query/queryhtm/npltotal.htm. Accessed April 20, 2009.

  • Vidal-Gavilan G. 2000. 3D flow cell: Inoculation of Strain KC and Predictions of CT-Removal Efficiency and Native Flora Competition. PhD Thesis. Department of Civil and Environmental Engineering, Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Vogel TM, Criddle CS, McCarty PL. 1987. Transformations of halogenated aliphatic compounds. Environ Sci Technol 21:722–736.

    Article  CAS  Google Scholar 

  • Warnick LB. 1998. Induced carbonate precipitation and cation exchange in sandy aquifer solids. M.S. Thesis. Department of Civil and Environmental Engineering. Michigan State University, Lansing, MI, USA.

    Google Scholar 

  • Witt ME, Dybas MJ, Worden RM, Criddle CS. 1999. Motility-enhanced bioremediation of carbon tetrachloride-contaminated aquifer sediments. Environ Sci Technol 33:2958–2964.

    Article  CAS  Google Scholar 

  • Zawadzka A, Paszczynski A, Crawford RL. 2009. Transformations of toxic metals and metalloids by Pseudomonas stutzeri strain KC and its siderophore pyridine-2,6-bis(thiocarboxylic acid). Adv Appl Bioremediation, Soil Biol, Vol 17. Springer-Verlag, Berlin: Heidelberg, Germany, pp 221–238.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Criddle, C.S. et al. (2013). Bioaugmentation with Pseudomonas Stutzeri KC for Carbon Tetrachloride Remediation . In: Stroo, H., Leeson, A., Ward, C. (eds) Bioaugmentation for Groundwater Remediation. SERDP ESTCP Environmental Remediation Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4115-1_9

Download citation

Publish with us

Policies and ethics