Skip to main content

Angiogenic Response of Endothelial Cells to Fibronectin

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((volume 749))

Abstract

The process of formation of new blood vessels from preexisting vessels is orchestrated by the interplay between cells, soluble factors, membrane-bound factors, and extracellular matrix (ECM) components. New vessels are generated following a program of several distinct steps involving loosening of matrix and intercellular adhesions, degradation of subendothelial matrix, migration and proliferation of endothelial cells (ECs) and the formation of new tubes. During these processes, adhesion of ECs to ECM components and to other interacting cells is important. Under normal physiological conditions, ECs rest on a laminin-rich basement membrane; but during the angiogenic process ECs interact with a fibronectin (FN) rich provisional matrix as they migrate and proliferate. The mechanism underlying the angiogenic effect of FN is discussed in this review. It appears that FN modulates endothelial functions relevant to its survival and angiogenesis in both integrin-dependent and -independent manner.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JC, Watt FM (1993) Regulation of development and differentiation by the extracellular matrix. Development 117:1183–98

    PubMed  CAS  Google Scholar 

  • Allen-Hoffmann BL, Crankshaw CL, Mosher DF (1988) Transforming growth factor beta increases cell surface binding and assembly of exogenous (plasma) fibronectin by normal human fibroblasts. Mol Cell Biol 8:4234–42

    PubMed  CAS  Google Scholar 

  • Ame JC, Spenlehauer C, de Murcia G (2004) The PARP superfamily. Bioessays 26:882–93

    PubMed  CAS  Google Scholar 

  • Aoki M, Kanamori M, Yudoh K et al (2001) Effects of vascular endothelial growth factor and E-selectin on angiogenesis in the murine metastatic RCT sarcoma. Tumour Biol 22:239–46

    PubMed  CAS  Google Scholar 

  • Baciu PC, Goetinck PF (1995) Protein kinase C regulates the recruitment of syndecan-4 into focal contacts. Mol Biol Cell 6:1503–13

    PubMed  CAS  Google Scholar 

  • Ben-Av P, Crofford LJ, Wilder RL et al (1995) Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372:83–7

    PubMed  CAS  Google Scholar 

  • Berra E, Diaz-Meco MT, Moscat J (1998) The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem 273:10792–7

    PubMed  CAS  Google Scholar 

  • Bird IN, Taylor V, Newton JP et al (1999) Homophilic PECAM-1(CD31) interactions prevent endothelial cell apoptosis but do not support cell spreading or migration. J Cell Sci 112(Pt 12):1989–97

    PubMed  CAS  Google Scholar 

  • Bishop-Bailey D, Hla T (1999) Endothelial cell apoptosis induced by the peroxisome proliferator-activated receptor (PPAR) ligand 15-deoxy-Delta12, 14-prostaglandin J2. J Biol Chem 274:17042–8

    PubMed  CAS  Google Scholar 

  • Bourdoulous S, Orend G, MacKenna DA et al (1998) Fibronectin matrix regulates activation of RHO and CDC42 GTPases and cell cycle progression. J Cell Biol 143:267–76

    PubMed  CAS  Google Scholar 

  • Brakebusch C, Bouvard D, Stanchi F et al (2002) Integrins in invasive growth. J Clin Invest 109:999–1006

    PubMed  CAS  Google Scholar 

  • Brune B, von Knethen A, Sandau KB (1998) Nitric oxide and its role in apoptosis. Eur J Pharmacol 351:261–72

    PubMed  CAS  Google Scholar 

  • Brusselmans K, Bono F, Collen D et al (2005) A novel role for vascular endothelial growth factor as an autocrine survival factor for embryonic stem cells during hypoxia. J Biol Chem 280:3493–9

    PubMed  CAS  Google Scholar 

  • Burridge K, Chrzanowska-Wodnicka M, Zhong C (1997) Focal adhesion assembly. Trends Cell Biol 7:342–7

    PubMed  CAS  Google Scholar 

  • Byrne AM, Bouchier-Hayes DJ, Harmey JH (2005) Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777–94

    PubMed  CAS  Google Scholar 

  • Campbell ID (2003) Modular proteins at the cell surface. Biochem Soc Trans 31:1107–14

    PubMed  CAS  Google Scholar 

  • Canfield AE, Schor AM (1995) Evidence that tenascin and thrombospondin-1 modulate sprouting of endothelial cells. J Cell Sci 108(Pt 2):797–809

    PubMed  CAS  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–95

    PubMed  CAS  Google Scholar 

  • Carnemolla B, Balza E, Siri A et al (1989) A tumor-associated fibronectin isoform generated by alternative splicing of messenger RNA precursors. J Cell Biol 108:1139–48

    PubMed  CAS  Google Scholar 

  • Castellani P, Borsi L, Carnemolla B et al (2002) Differentiation between high- and low-grade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin. Am J Pathol 161:1695–700

    PubMed  CAS  Google Scholar 

  • Chakravarti A, Zhai G, Suzuki Y et al (2004) The prognostic significance of phosphatidylinositol 3-kinase pathway activation in human gliomas. J Clin Oncol 22:1926–33

    PubMed  CAS  Google Scholar 

  • Cho MK, Cho YH, Lee GH et al (2004) Induction of cyclooxygenase-2 by bovine type I collagen in macrophages via C/EBP and CREB activation by multiple cell signaling pathways. Biochem Pharmacol 67:2239–50

    PubMed  CAS  Google Scholar 

  • Cianchi F, Cortesini C, Bechi P et al (2001) Up-regulation of cyclooxygenase 2 gene expression correlates with tumor angiogenesis in human colorectal cancer. Gastroenterology 121:1339–47

    PubMed  CAS  Google Scholar 

  • Clark RA, McCoy GA, Folkvord JM et al (1997) TGF-beta 1 stimulates cultured human fibroblasts to proliferate and produce tissue-like fibroplasia: a fibronectin matrix-dependent event. J Cell Physiol 170:69–80

    PubMed  CAS  Google Scholar 

  • Colville-Nash PR, Scott DL (1992) Angiogenesis and rheumatoid arthritis: pathogenic and therapeutic implications. Ann Rheum Dis 51:919–25

    PubMed  CAS  Google Scholar 

  • Couchman JR, Woods A (1999) Syndecan-4 and integrins: combinatorial signaling in cell adhesion. J Cell Sci 112(Pt 20):3415–20

    PubMed  CAS  Google Scholar 

  • Daniel TO, Liu H, Morrow JD et al (1999) Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Res 59:4574–7

    PubMed  CAS  Google Scholar 

  • Davis GE, Senger DR (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ Res 97:1093–107

    PubMed  CAS  Google Scholar 

  • Diaz A, Chepenik KP, Korn JH et al (1998) Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. Exp Cell Res 241:222–9

    PubMed  CAS  Google Scholar 

  • Diaz-Flores L, Gutierrez R, Varela H (1994) Angiogenesis: an update. Histol Histopathol 9:807–43

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Zeiher AM (1999) Nitric oxide-an endothelial cell survival factor. Cell Death Differ 6:964–8

    PubMed  CAS  Google Scholar 

  • Dimmeler S, Hermann C, Galle J et al (1999) Upregulation of superoxide dismutase and nitric oxide synthase mediates the apoptosis-suppressive effects of shear stress on endothelial cells. Arterioscler Thromb Vasc Biol 19:656–64

    PubMed  CAS  Google Scholar 

  • Ding Q, Grammer JR, Nelson MA et al (2005) p27Kip1 and cyclin D1 are necessary for focal adhesion kinase regulation of cell cycle progression in glioblastoma cells propagated in vitro and in vivo in the scid mouse brain. J Biol Chem 280:6802–15

    PubMed  CAS  Google Scholar 

  • Distler JH, Hirth A, Kurowska-Stolarska M et al (2003) Angiogenic and angiostatic factors in the molecular control of angiogenesis. Q J Nucl Med 47:149–61

    PubMed  CAS  Google Scholar 

  • Dixon DA (2004) Dysregulated post-transcriptional control of COX-2 gene expression in cancer. Curr Pharm Des 10:635–46

    PubMed  CAS  Google Scholar 

  • Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–7

    PubMed  CAS  Google Scholar 

  • Dubois RN, Abramson SB, Crofford L et al (1998) Cyclooxygenase in biology and disease. FASEB J 12:1063–73

    PubMed  CAS  Google Scholar 

  • Echtermeyer F, Streit M, Wilcox-Adelman S et al (2001) Delayed wound repair and impaired angiogenesis in mice lacking syndecan-4. J Clin Invest 107:R9–R14

    PubMed  CAS  Google Scholar 

  • Eliceiri BP, Cheresh DA (2001) Adhesion events in angiogenesis. Curr Opin Cell Biol 13:563–8

    PubMed  CAS  Google Scholar 

  • Fisslthaler B, Dimmeler S, Hermann C et al (2000) Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168:81–8

    PubMed  CAS  Google Scholar 

  • Flamme I, Frolich T, Risau W (1997) Molecular mechanisms of vasculogenesis and embryonic angiogenesis. J Cell Physiol 173:206–10

    PubMed  CAS  Google Scholar 

  • Fleming I, Busse R (2003) Molecular mechanisms involved in the regulation of the endothelial nitric oxide synthase. Am J Physiol Regul Integr Comp Physiol 284:R1–12

    PubMed  CAS  Google Scholar 

  • Fleming I, Bauersachs J, Fisslthaler B et al (1998) Ca2+-independent activation of the endothelial nitric oxide synthase in response to tyrosine phosphatase inhibitors and fluid shear stress. Circ Res 82:686–95

    PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Dimmeler S et al (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–75

    PubMed  CAS  Google Scholar 

  • Form DM, Auerbach R (1983) PGE2 and angiogenesis. Proc Soc Exp Biol Med 172:214–8

    PubMed  CAS  Google Scholar 

  • Francis SE, Goh KL, Hodivala-Dilke K et al (2002) Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies. Arterioscler Thromb Vasc Biol 22:927–33

    PubMed  CAS  Google Scholar 

  • Gallis B, Corthals GL, Goodlett DR et al (1999) Identification of flow-dependent endothelial nitric-oxide synthase phosphorylation sites by mass spectrometry and regulation of phosphorylation and nitric oxide production by the phosphatidylinositol 3-kinase inhibitor LY294002. J Biol Chem 274:30101–8

    PubMed  CAS  Google Scholar 

  • Gallo R, Kim C, Kokenyesi R et al (1996) Syndecans-1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol 107:676–83

    PubMed  CAS  Google Scholar 

  • Gallo O, Franchi A, Magnelli L et al (2001) Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 3:53–61

    PubMed  CAS  Google Scholar 

  • Garbers DL (1992) Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 71:1–4

    PubMed  CAS  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS et al (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–91

    PubMed  CAS  Google Scholar 

  • George EL, Baldwin HS, Hynes RO (1997) Fibronectins are essential for heart and blood vessel morphogenesis but are dispensable for initial specification of precursor cells. Blood 90:3073–81

    PubMed  CAS  Google Scholar 

  • Gerber HP, Malik AK, Solar GP et al (2002) VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417:954–8

    PubMed  CAS  Google Scholar 

  • Giancotti FG, Ruoslahti E (1999) Integrin signaling. Science 285:1028–32

    PubMed  CAS  Google Scholar 

  • Gorsdorf S, Appel KE, Engeholm C et al (1990) Nitrogen dioxide induces DNA single-strand breaks in cultured Chinese hamster cells. Carcinogenesis 11:37–41

    PubMed  CAS  Google Scholar 

  • Graeber JE, Glaser BM, Setty BN et al (1990) 15-Hydroxyeicosatetraenoic acid stimulates migration of human retinal microvessel endothelium in vitro and neovascularization in vivo. Prostaglandins 39:665–73

    PubMed  CAS  Google Scholar 

  • Grant MB, Caballero S, Bush DM et al (1998) Fibronectin fragments modulate human retinal capillary cell proliferation and migration. Diabetes 47:1335–40

    PubMed  CAS  Google Scholar 

  • Guo M, Sahni SK, Sahni A et al (2004) Fibrinogen regulates the expression of inflammatory chemokines through NF-kappaB activation of endothelial cells. Thromb Haemost 92:858–66

    PubMed  CAS  Google Scholar 

  • Han S, Sidell N, Roser-Page S et al (2004) Fibronectin stimulates human lung carcinoma cell growth by inducing cyclooxygenase-2 (COX-2) expression. Int J Cancer 111:322–31

    PubMed  CAS  Google Scholar 

  • Hellermann GR, Flam BR, Eichler DC et al (2000) Stimulation of receptor-mediated nitric oxide production by vanadate. Arterioscler Thromb Vasc Biol 20:2045–50

    PubMed  CAS  Google Scholar 

  • Herren B, Levkau B, Raines EW et al (1998) Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 9:1589–601

    PubMed  CAS  Google Scholar 

  • Hocking DC, Chang CH (2003) Fibronectin matrix polymerization regulates small airway epithelial cell migration. Am J Physiol Lung Cell Mol Physiol 285:L169–79

    PubMed  CAS  Google Scholar 

  • Hocking DC, Kowalski K (2002) A cryptic fragment from fibronectin’s III1 module localizes to lipid rafts and stimulates cell growth and contractility. J Cell Biol 158:175–84

    PubMed  CAS  Google Scholar 

  • Hocking DC, Sottile J, Langenbach KJ (2000) Stimulation of integrin-mediated cell contractility by fibronectin polymerization. J Biol Chem 275:10673–82

    PubMed  CAS  Google Scholar 

  • Hoffmann J, Haendeler J, Aicher A et al (2001) Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: important role of nitric oxide. Circ Res 89:709–15

    PubMed  CAS  Google Scholar 

  • Horowitz A, Murakami M, Gao Y et al (1999) Phosphatidylinositol-4,5-bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 38:15871–7

    PubMed  CAS  Google Scholar 

  • Huang S, Pettaway CA, Uehara H et al (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–97

    PubMed  CAS  Google Scholar 

  • Huebsch JC, McCarthy JB, Diglio CA et al (1995) Endothelial cell interactions with synthetic peptides from the carboxyl-terminal heparin-binding domains of fibronectin. Circ Res 77:43–53

    PubMed  CAS  Google Scholar 

  • Ignotz RA, Massague J (1986) Transforming growth factor-beta stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–45

    PubMed  CAS  Google Scholar 

  • Ilic D, Almeida EA, Schlaepfer DD et al (1998) Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis. J Cell Biol 143:547–60

    PubMed  CAS  Google Scholar 

  • Iozzo RV, San Antonio JD (2001) Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 108:349–55

    PubMed  CAS  Google Scholar 

  • Jensen BA, Holund B, Clemmensen I (1983) Demonstration of fibronectin in normal and injured aorta by an indirect immunoperoxidase technique. Histochemistry 77:395–403

    PubMed  CAS  Google Scholar 

  • Johansson S, Svineng G, Wennerberg K et al (1997) Fibronectin-integrin interactions. Front Biosci 2:d126–46

    PubMed  CAS  Google Scholar 

  • Jones MK, Wang H, Peskar BM et al (1999) Inhibition of angiogenesis by nonsteroidal anti-inflammatory drugs: insight into mechanisms and implications for cancer growth and ulcer healing. Nat Med 5:1418–23

    PubMed  CAS  Google Scholar 

  • Kaloglu C, Onarlioglu B (2010) Extracellular matrix remodelling in rat endometrium during early pregnancy: the role of fibronectin and laminin. Tissue Cell 42:301–6

    PubMed  CAS  Google Scholar 

  • Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E et al (1997) Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–8

    PubMed  CAS  Google Scholar 

  • Khan KM, Howe LR, Falcone DJ (2004) Extracellular matrix-induced cyclooxygenase-2 regulates macrophage proteinase expression. J Biol Chem 279:22039–46

    PubMed  CAS  Google Scholar 

  • Khwaja A, Downward J (1997) Lack of correlation between activation of Jun-NH2-terminal kinase and induction of apoptosis after detachment of epithelial cells. J Cell Biol 139:1017–23

    PubMed  CAS  Google Scholar 

  • Kim S, Bell K, Mousa SA et al (2000) Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin. Am J Pathol 156:1345–62

    PubMed  CAS  Google Scholar 

  • Kim S, Bakre M, Yin H et al (2002) Inhibition of endothelial cell survival and angiogenesis by protein kinase A. J Clin Invest 110:933–41

    PubMed  CAS  Google Scholar 

  • Kiran MS, Sameer Kumar VB, Viji RI et al (2006) Temporal relationship between MMP production and angiogenic process in HUVECs. Cell Biol Int 30:704–13

    PubMed  CAS  Google Scholar 

  • Klein S, de Fougerolles AR, Blaikie P et al (2002) Alpha 5 beta 1 integrin activates an NF-kappa B-dependent program of gene expression important for angiogenesis and inflammation. Mol Cell Biol 22:5912–22

    PubMed  CAS  Google Scholar 

  • Kornberg L, Earp HS, Parsons JT et al (1992) Cell adhesion or integrin clustering increases phosphorylation of a focal adhesion-associated tyrosine kinase. J Biol Chem 267:23439–42

    PubMed  CAS  Google Scholar 

  • Kornblihtt AR, Pesce CG, Alonso CR et al (1996) The fibronectin gene as a model for splicing and transcription studies. FASEB J 10:248–57

    PubMed  CAS  Google Scholar 

  • Kumar NS, Abraham R, Kumar GS et al (1992) Synthesis and secretion of VLDL by rat hepatocytes–modulation by cholesterol and phospholipids. Indian J Biochem Biophys 29:438–41

    PubMed  CAS  Google Scholar 

  • Kumar VB, Viji RI, Kiran MS et al (2007) Endothelial cell response to lactate: implication of PAR modification of VEGF. J Cell Physiol 211:477–85

    PubMed  CAS  Google Scholar 

  • Kumar VB, Viji RI, Kiran MS et al (2009) Negative modulation of eNOS by laminin involving post-translational phosphorylation. J Cell Physiol 219:123–31

    PubMed  CAS  Google Scholar 

  • Kumar VB, Viji RI, Kiran MS et al (2011) Angiogenic effect of laminin involves modulation of cyclooxygenase-2 and prostaglandin levels. Exp Biol Med (Maywood) 236:44–51

    CAS  Google Scholar 

  • Labat-Robert J, Szendroi M, Godeau G et al (1985) Comparative distribution patterns of type I and III collagens and fibronectin in human arteriosclerotic aorta. Pathol Biol (Paris) 33:261–5

    CAS  Google Scholar 

  • Lee JW, Juliano RL (2000) alpha5beta1 integrin protects intestinal epithelial cells from apoptosis through a phosphatidylinositol 3-kinase and protein kinase B-dependent pathway. Mol Biol Cell 11:1973–87

    PubMed  CAS  Google Scholar 

  • Lee VY, McClintock DS, Santore MT et al (2002) Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem 277:16067–74

    PubMed  CAS  Google Scholar 

  • Levkau B, Herren B, Koyama H et al (1998) Caspase-mediated cleavage of focal adhesion kinase pp 125FAK and disassembly of focal adhesions in human endothelial cell apoptosis. J Exp Med 187:579–86

    PubMed  CAS  Google Scholar 

  • Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–34

    PubMed  CAS  Google Scholar 

  • Liao NS, John St J, McCarthy JB et al (1989) Adhesion of lymphoid cells to the carboxyl-terminal heparin-binding domains of fibronectin. Exp Cell Res 181:348–361

    Google Scholar 

  • Liekens S, De Clercq E, Neyts J (2001) Angiogenesis: regulators and clinical applications. Biochem Pharmacol 61:253–70

    PubMed  CAS  Google Scholar 

  • Lopez S, Vila L, Breviario F et al (1993) Interleukin-1 increases 15-hydroxyeicosatetraenoic acid formation in cultured human endothelial cells. Biochim Biophys Acta 1170:17–24

    PubMed  CAS  Google Scholar 

  • Mahabeleshwar GH, Feng W, Reddy K et al (2007) Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ Res 101:570–80

    PubMed  CAS  Google Scholar 

  • Marletta MA, Yoon PS, Iyengar R et al (1988) Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 27:8706–11

    PubMed  CAS  Google Scholar 

  • Marnett LJ, Kalgutkar AS (1999) Cyclooxygenase 2 inhibitors: discovery, selectivity and the future. Trends Pharmacol Sci 20:465–9

    PubMed  CAS  Google Scholar 

  • McCabe TJ, Fulton D, Roman LJ et al (2000) Enhanced electron flux and reduced calmodulin dissociation may explain “calcium-independent” eNOS activation by phosphorylation. J Biol Chem 275:6123–8

    PubMed  CAS  Google Scholar 

  • McCarthy JB, Skubitz AP, Qi Z et al (1990) RGD-independent cell adhesion to the carboxy-terminal heparin-binding fragment of fibronectin involves heparin-dependent and -independent activities. J Cell Biol 110:777–87

    PubMed  CAS  Google Scholar 

  • Mercurius KO, Morla AO (1998) Inhibition of vascular smooth muscle cell growth by inhibition of fibronectin matrix assembly. Circ Res 82:548–56

    PubMed  CAS  Google Scholar 

  • Michell BJ, Chen Z, Tiganis T et al (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–8

    PubMed  CAS  Google Scholar 

  • Mitra AK, Sawada K, Tiwari P et al (2011) Ligand-independent activation of c-Met by fibronectin and alpha(5)beta(1)-integrin regulates ovarian cancer invasion and metastasis. Oncogene 30:1566–76

    PubMed  CAS  Google Scholar 

  • Montesano R, Pepper MS, Vassalli JD et al (1992) Modulation of angiogenesis in vitro. EXS 61:129–36

    PubMed  CAS  Google Scholar 

  • Morla A, Zhang Z, Ruoslahti E (1994) Superfibronectin is a functionally distinct form of fibronectin. Nature 367:193–6

    PubMed  CAS  Google Scholar 

  • Mosher DF, Furcht LT (1981) Fibronectin: review of its structure and possible functions. J Invest Dermatol 77:175–80

    PubMed  CAS  Google Scholar 

  • Mudgett JS, Ding J, Guh-Siesel L et al (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc Natl Acad Sci USA 97:10454–9

    PubMed  CAS  Google Scholar 

  • Murohara T, Asahara T, Silver M et al (1998) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101:2567–78

    PubMed  CAS  Google Scholar 

  • Murohara T, Witzenbichler B, Spyridopoulos I et al (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 19:1156–61

    PubMed  CAS  Google Scholar 

  • Murphy JF, Steele C, Belton O et al (2003) Induction of cyclooxygenase-1 and -2 modulates angiogenic responses to engagement of alphavbeta3. Br J Haematol 121:157–64

    PubMed  CAS  Google Scholar 

  • Namkoong S, Lee SJ, Kim CK et al (2005) Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med 37:588–600

    PubMed  CAS  Google Scholar 

  • Nathan C, Xie QW (1994) Nitric oxide synthases: roles, tolls, and controls. Cell 78:915–8

    PubMed  CAS  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S et al (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    PubMed  CAS  Google Scholar 

  • Nguyen T, Brunson D, Crespi CL et al (1992) DNA damage and mutation in human cells exposed to nitric oxide in vitro. Proc Natl Acad Sci USA 89:3030–4

    PubMed  CAS  Google Scholar 

  • Nicosia RF, Bonanno E, Smith M (1993) Fibronectin promotes the elongation of microvessels during angiogenesis in vitro. J Cell Physiol 154:654–61

    PubMed  CAS  Google Scholar 

  • Nor JE, Polverini PJ (1999) Role of endothelial cell survival and death signals in angiogenesis. Angiogenesis 3:101–16

    PubMed  CAS  Google Scholar 

  • Orecchia A, Lacal PM, Schietroma C et al (2003) Vascular endothelial growth factor receptor-1 is deposited in the extracellular matrix by endothelial cells and is a ligand for the alpha 5 beta 1 integrin. J Cell Sci 116:3479–89

    PubMed  CAS  Google Scholar 

  • Pai R, Szabo IL, Soreghan BA et al (2001) PGE(2) stimulates VEGF expression in endothelial cells via ERK2/JNK1 signaling pathways. Biochem Biophys Res Commun 286:923–8

    PubMed  CAS  Google Scholar 

  • Ramsay RG, Ciznadija D, Vanevski M et al (2003) Transcriptional regulation of cyclo-oxygenase expression: three pillars of control. Int J Immunopathol Pharmacol 16:59–67

    PubMed  CAS  Google Scholar 

  • Re F, Zanetti A, Sironi M et al (1994) Inhibition of anchorage-dependent cell spreading triggers apoptosis in cultured human endothelial cells. J Cell Biol 127:537–46

    PubMed  CAS  Google Scholar 

  • Risau W, Lemmon V (1988) Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev Biol 125:441–50

    PubMed  CAS  Google Scholar 

  • Rogers SL, Letourneau PC, Peterson BA et al (1987) Selective interaction of peripheral and central nervous system cells with two distinct cell-binding domains of fibronectin. J Cell Biol 105:1435–42

    PubMed  CAS  Google Scholar 

  • Rossi A, Kapahi P, Natoli G et al (2000) Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IkappaB kinase. Nature 403:103–8

    PubMed  CAS  Google Scholar 

  • Rousseau S, Houle F, Landry J et al (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–77

    PubMed  CAS  Google Scholar 

  • Ruegg C, Mariotti A (2003) Vascular integrins: pleiotropic adhesion and signaling molecules in vascular homeostasis and angiogenesis. Cell Mol Life Sci 60:1135–57

    PubMed  CAS  Google Scholar 

  • Santore MT, McClintock DS, Lee VY et al (2002) Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 282:L727–34

    PubMed  CAS  Google Scholar 

  • Scatena M, Almeida M, Chaisson ML et al (1998) NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 141:1083–93

    PubMed  CAS  Google Scholar 

  • Schlaepfer DD, Hauck CR, Sieg DJ (1999) Signaling through focal adhesion kinase. Prog Biophys Mol Biol 71:435–78

    PubMed  CAS  Google Scholar 

  • Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114:2553–60

    PubMed  CAS  Google Scholar 

  • Searles CD, Miwa Y, Harrison DG et al (1999) Posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res 85:588–95

    PubMed  CAS  Google Scholar 

  • Sechler JL, Schwarzbauer JE (1998) Control of cell cycle progression by fibronectin matrix architecture. J Biol Chem 273:25533–6

    PubMed  CAS  Google Scholar 

  • Semenza GL (2001) Regulation of hypoxia-induced angiogenesis: a chaperone escorts VEGF to the dance. J Clin Invest 108:39–40

    PubMed  CAS  Google Scholar 

  • Seno H, Oshima M, Ishikawa TO et al (2002) Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(Delta716) mouse intestinal polyps. Cancer Res 62:506–11

    PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4:E131–6

    PubMed  CAS  Google Scholar 

  • Shen YH, Wang XL, Wilcken DE (1998) Nitric oxide induces and inhibits apoptosis through different pathways. FEBS Lett 433:125–31

    PubMed  CAS  Google Scholar 

  • Stromblad S, Cheresh DA (1996) Cell adhesion and angiogenesis. Trends Cell Biol 6:462–8

    PubMed  CAS  Google Scholar 

  • Suenobu N, Shichiri M, Iwashina M et al (1999) Natriuretic peptides and nitric oxide induce endothelial apoptosis via a cGMP-dependent mechanism. Arterioscler Thromb Vasc Biol 19:140–6

    PubMed  CAS  Google Scholar 

  • Takasaki I, Chobanian AV, Brecher P (1991) Biosynthesis of fibronectin by rabbit aorta. J Biol Chem 266:17686–94

    PubMed  CAS  Google Scholar 

  • Tamura M, Sebastian S, Gurates B et al (2002) Vascular endothelial growth factor up-regulates cyclooxygenase-2 expression in human endothelial cells. J Clin Endocrinol Metab 87:3504–7

    PubMed  CAS  Google Scholar 

  • Tanabe T, Tohnai N (2002) Cyclooxygenase isozymes and their gene structures and expression. Prostaglandins Other Lipid Mediat 68–69:95–114

    PubMed  Google Scholar 

  • Tazawa R, Xu XM, Wu KK et al (1994) Characterization of the genomic structure, chromosomal location and promoter of human prostaglandin H synthase-2 gene. Biochem Biophys Res Commun 203:190–9

    PubMed  CAS  Google Scholar 

  • Tsuji S, Kawano S, Tsujii M et al (1998) Mucosal microcirculation and angiogenesis in gastrointestinal tract. Nippon Rinsho 56:2247–52

    PubMed  CAS  Google Scholar 

  • Tsujii M, DuBois RN (1995) Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell 83:493–501

    PubMed  CAS  Google Scholar 

  • Viji RI, Kumar VB, Kiran MS et al (2008a) Angiogenic response of endothelial cells to heparin-binding domain of fibronectin. Int J Biochem Cell Biol 40:215–26

    PubMed  CAS  Google Scholar 

  • Viji RI, Kumar VB, Kiran MS et al (2008b) Modulation of cyclooxygenase in endothelial cells by fibronectin: relevance to angiogenesis. J Cell Biochem 105:158–66

    PubMed  CAS  Google Scholar 

  • Viji RI, Kumar VB, Kiran MS et al (2009) Modulation of endothelial nitric oxide synthase by fibronectin. Mol Cell Biochem 323:91–100

    PubMed  CAS  Google Scholar 

  • Visser MR, Vercellotti GM, McCarthy JB et al (1989) Herpes simplex virus inhibits endothelial cell attachment and migration to extracellular matrix proteins. Am J Pathol 134:223–30

    PubMed  CAS  Google Scholar 

  • Wagner DD, Hynes RO (1979) Domain structure of fibronectin and its relation to function. Disulfides and sulfhydryl groups. J Biol Chem 254:6746–54

    PubMed  CAS  Google Scholar 

  • Waltenberger J, Claesson-Welsh L, Siegbahn A et al (1994) Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–95

    PubMed  CAS  Google Scholar 

  • Wang D, Grammer JR, Cobbs CS et al (2000) p125 focal adhesion kinase promotes malignant astrocytoma cell proliferation in vivo. J Cell Sci 113(Pt 23):4221–30

    PubMed  CAS  Google Scholar 

  • Wellner M, Maasch C, Kupprion C et al (1999) The proliferative effect of vascular endothelial growth factor requires protein kinase C-alpha and protein kinase C-zeta. Arterioscler Thromb Vasc Biol 19:178–85

    PubMed  CAS  Google Scholar 

  • Wierzbicka-Patynowski I, Schwarzbauer JE (2003) The ins and outs of fibronectin matrix assembly. J Cell Sci 116:3269–76

    PubMed  CAS  Google Scholar 

  • Wijelath ES, Murray J, Rahman S et al (2002) Novel vascular endothelial growth factor binding domains of fibronectin enhance vascular endothelial growth factor biological activity. Circ Res 91:25–31

    PubMed  CAS  Google Scholar 

  • Wijelath ES, Rahman S, Namekata M et al (2006) Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circ Res 99:853–60

    PubMed  CAS  Google Scholar 

  • Wilcox-Adelman SA, Denhez F, Goetinck PF (2002) Syndecan-4 modulates focal adhesion kinase phosphorylation. J Biol Chem 277:32970–7

    PubMed  CAS  Google Scholar 

  • Williams CS, DuBois RN (1996) Prostaglandin endoperoxide synthase: why two isoforms? Am J Physiol 270:G393–400

    PubMed  CAS  Google Scholar 

  • Wilson SH, Ljubimov AV, Morla AO et al (2003) Fibronectin fragments promote human retinal endothelial cell adhesion and proliferation and ERK activation through alpha5beta1 integrin and PI 3-kinase. Invest Ophthalmol Vis Sci 44:1704–15

    PubMed  Google Scholar 

  • Wu C, Keightley SY, Leung-Hagesteijn C et al (1998) Integrin-linked protein kinase regulates fibronectin matrix assembly, E-cadherin expression, and tumorigenicity. J Biol Chem 273:528–36

    PubMed  CAS  Google Scholar 

  • Xie D, Hui F, Homandberg GA (1993) Fibronectin fragments alter matrix protein synthesis in cartilage tissue cultured in vitro. Arch Biochem Biophys 307:110–8

    PubMed  CAS  Google Scholar 

  • Xin X, Yang S, Kowalski J et al (1999) Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J Biol Chem 274:9116–21

    PubMed  CAS  Google Scholar 

  • Xiong M, Elson G, Legarda D et al (1998) Production of vascular endothelial growth factor by murine macrophages: regulation by hypoxia, lactate, and the inducible nitric oxide synthase pathway. Am J Pathol 153:587–98

    PubMed  CAS  Google Scholar 

  • Yancopoulos GD, Davis S, Gale NW et al (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–8

    PubMed  CAS  Google Scholar 

  • Yang JT, Rayburn H, Hynes RO (1993) Embryonic mesodermal defects in alpha 5 integrin-deficient mice. Development 119:1093–105

    PubMed  CAS  Google Scholar 

  • Yang S, Graham J, Kahn JW et al (1999) Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am J Pathol 155:887–95

    PubMed  CAS  Google Scholar 

  • Yazawa K, Tsuno NH, Kitayama J et al (2005) Selective inhibition of cyclooxygenase (COX)-2 inhibits endothelial cell proliferation by induction of cell cycle arrest. Int J Cancer 113:541–8

    PubMed  CAS  Google Scholar 

  • Yi M, Ruoslahti E (2001) A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA 98:620–4

    PubMed  CAS  Google Scholar 

  • Zachary I (1998) Vascular endothelial growth factor: how it transmits its signal. Exp Nephrol 6:480–7

    PubMed  CAS  Google Scholar 

  • Zaric J, Ruegg C (2005) Integrin-mediated adhesion and soluble ligand binding stabilize COX-2 protein levels in endothelial cells by inducing expression and preventing degradation. J Biol Chem 280:1077–85

    PubMed  CAS  Google Scholar 

  • Zhang Q, Magnusson MK, Mosher DF (1997) Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol Biol Cell 8:1415–25

    PubMed  CAS  Google Scholar 

  • Zhong C, Chrzanowska-Wodnicka M, Brown J et al (1998) Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141:539–51

    PubMed  CAS  Google Scholar 

  • Ziche M, Jones J, Gullino PM (1982) Role of prostaglandin E1 and copper in angiogenesis. J Natl Cancer Inst 69:475–82

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perumana R. Sudhakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Kumar, V.B.S., Viji, R.I., Kiran, M.S., Sudhakaran, P.R. (2012). Angiogenic Response of Endothelial Cells to Fibronectin. In: Sudhakaran, P., Surolia, A. (eds) Biochemical Roles of Eukaryotic Cell Surface Macromolecules. Advances in Experimental Medicine and Biology, vol 749. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3381-1_10

Download citation

Publish with us

Policies and ethics