Skip to main content

Lattice Rules: How Well Do They Measure Up?

  • Chapter
Book cover Random and Quasi-Random Point Sets

Part of the book series: Lecture Notes in Statistics ((LNS,volume 138))

Abstract

A simple, but often effective, way to approximate an integral over the s-dimensional unit cube is to take the average of the integrand over some set P of N points. Monte Carlo methods choose P randomly and typically obtain an error of 0(N-1/2). Quasi-Monte Carlo methods attempt to decrease the error by choosing P in a deterministic (or quasi-random) way so that the points are more uniformly spread over the integration domain.

This research was supported by an HKBU FRG grant 96–97/II-67.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Abramowitz and I. A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs and mathematical tables, U. S. Government Printing Office, Washington, DC, 1964.

    Google Scholar 

  2. P. Bratley, B. L. Fox, and H. Niederreiter, Implementation and tests of low-discrepancy sequences, ACM Trans. Model. Comput. Simul. 2 (1992), 195–213.

    MATH  Google Scholar 

  3. R. E. Caflisch, W. Morokoff, and A. Owen, Valuation of mortgage backed securities using Brownian bridges to reduce effective dimension, J. Comput. Finance 1 (1997), 27–46.

    Google Scholar 

  4. R. Cools and I. H. Sloan, Minimal cubature formulae of trigonometric degree, Math. Comp. 65 (1996), 1583–1600.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Disney and I. H. Sloan, Error bounds for the method of good lattice points, Math. Comp. 56 (1991), 257–266.

    Article  MathSciNet  MATH  Google Scholar 

  6. B. Efron and C. Stein, The jackknife estimate of variance, Ann.Stat. 9 (1981), 586–596.

    Article  MathSciNet  MATH  Google Scholar 

  7. H. Faure, Discrépance de suites associées à un système de numération (en dimension s), Acta Arith. 41 (1982), 337–351.

    MathSciNet  MATH  Google Scholar 

  8. K. Frank and S. HeinrichComputing discrepancies of Smolyak quadrature rules, J. Complexity 12 (1996), 287–314.

    Article  MathSciNet  MATH  Google Scholar 

  9. S. HeinrichEfficient algorithms for computing the L2-discrepancy, Math. Comp. 65 (1996), 1621–1633.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. J. Hickernell and H. S. Hong, Computing multivariate normal probabilities using rank-1 lattice sequences, Proceedings of the Workshop on Scientific Computing (Hong Kong) (G. H. Golub, S. H. Lui, F. T. Luk, and R. J. Plemmons, eds.), Springer-Verlag, Singapore, 1997, pp. 209–215.

    Google Scholar 

  11. F. J. Hickernell and H. S. Hong, The asymptotic efficiency of randomized nets for quadrature, Math. Comp. 67 (1998), to appear.

    Google Scholar 

  12. F. J. Hickernell, A comparison of random and quasirandom points for multidimensional quadrature, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. J.-S. Shiue, eds.), Lecture Notes in Statistics, vol. 106, Springer-Verlag, New York, 1995, pp. 213–227.

    Google Scholar 

  13. F. J. Hickernell, The mean square discrepancy of randomized nets, ACM Trans. Model. Comput. Simul. 6 (1996), 274–296.

    MathSciNet  MATH  Google Scholar 

  14. F. J. Hickernell, Quadrature error bounds with applications to lattice rules, SIAM J. Numer. Anal. 33 (1996), 1995–2016, corrected printing of Sections 3–6 in ibid., 34 (1997), 853–866.

    MathSciNet  Google Scholar 

  15. F. J. Hickernell, A generalized discrepancy and quadrature errorbound, Math. Comp. 67 (1998), 299–322.

    Article  MathSciNet  MATH  Google Scholar 

  16. E. Hlawka, Funktionen von beschränkter Variation in der Theorie der Gleichverteilung, Ann. Mat. Pura Appl. 54 (1961), 325–333.

    Article  MathSciNet  MATH  Google Scholar 

  17. L. K. Hua and Y. Wang, Applications of number theory to numerical analysis, Springer-Verlag and Science Press, Berlin and Beijing, 1981.

    MATH  Google Scholar 

  18. N. M. Korobov, The approximate computation of multiple integrals, Dokl. Adad. Nauk. SSR 124 (1959), 1207–1210, (Russian).

    MathSciNet  MATH  Google Scholar 

  19. T. N. Langtry, The determination of canonical forms for lattice quadrature rules, J. Comput. Appl. Math. 59 (1995), 129–143.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. N. Langtry, An application of Diophantine approximation to the construction of rank-1 lattice quadrature rules, Math. Comp. 65 (1996), 1635–1662.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. N. Lyness and S. Joe, Triangular canonical forms for lattice rules of prime-power order, Math. Comp. 65 (1996), 65–178.

    Article  MathSciNet  Google Scholar 

  22. J. N. Lyness and I. H. Sloan, Cubature rules of prescribed merit,SIAM J. Numer. Anal. 34 (1997), 586–602.

    Article  MathSciNet  MATH  Google Scholar 

  23. W. J. Morokoff and R. E. Caflisch, Quasi-random sequences and their discrepancies, SIAM J. Sci. Comput. 15 (1994), 1251–1279.

    MathSciNet  MATH  Google Scholar 

  24. H. Niederreiter, Random number generation and quasi-Monte Carlo methods, SIAM, Philadelphia, 1992.

    Book  MATH  Google Scholar 

  25. S. Ninomiya and S. Tezuka, Toward real-time pricing of complex financial derivatives, Appl. Math. Finance 3 (1996), 1–20.

    Article  MATH  Google Scholar 

  26. A. B. Owen, Orthogonal arrays for computer experiments,integration and visualization, Statist. Sinica 2 (1992), 439–452.

    MathSciNet  MATH  Google Scholar 

  27. A. B. Owen, Randomly permuted (t, m, s)-nets and (t, s)-sequences, Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing (H. Niederreiter and P. J.-S. Shiue, eds.), Lecture Notes in Statistics, vol. 106, Springer-Verlag, New York, 1995, pp. 299–317.

    Google Scholar 

  28. A. B. Owen, Monte Carlo variance of scrambled equidistribution quadrature, SIAM J. Numer. Anal. 34 (1997), 1884–1910.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. B. Owen, Scrambled net variance for integrals of smooth functions, Ann. Stat. 25 (1997), 1541–1562.

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Paskov and J. Traub, Faster valuation of financial derivatives, J. Portfolio Management 22 (1995), 113–120.

    Article  Google Scholar 

  31. A. Papageorgiou and J. F. Traub, Beating monte carlo, Risk 9 (1996), no. 6, 63–65.

    Google Scholar 

  32. K. Ritter, Average case analysis of numerical problems, Ph.D.thesis, Universität Erlangen-Nürnberg, Erlangen, Germany, 1995.

    Google Scholar 

  33. S. Saitoh, Theory of reproducing kernels and its applications,Longman Scientific & Technical, Essex, England, 1988.

    MATH  Google Scholar 

  34. I. H. Sloan and S. Joe, Lattice methods for multiple integration,Oxford University Press, Oxford, 1994.

    MATH  Google Scholar 

  35. I. H. Sloan and P. J. Kachoyan, Lattice methods for multiple integration: Theory, error analysis and examples, SIAM J. Numer. Anal. 24 (1987), 116–128.

    Article  MathSciNet  MATH  Google Scholar 

  36. I. H. Sloan, Lattice methods for multiple integration,J. Comput.Appl. Math. 12 & 13 (1985), 131–143.

    Article  MathSciNet  Google Scholar 

  37. I. M. Sobol’The distribution of points in a cube and the approximate evaluation of integrals, U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 86–112.

    Article  MathSciNet  Google Scholar 

  38. I. M. Sobol’, Multidimensional quadrature formulas and Haar functions (in Russian), Izdat. “Nauka”, Moscow, 1969.

    Google Scholar 

  39. I. H. Sloan and H. Woiniakowski, An intractability result for multiple integration, Math. Comp. 66 (1997), 1119–1124.

    Article  MathSciNet  MATH  Google Scholar 

  40. I. H. Sloan and H. Woiniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals, J. Complexity 14 (1998), 1–33.

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Wahba, Spline models for observational data, SIAM, Philadelphia, 1990.

    Book  MATH  Google Scholar 

  42. H. Woiniakowski, Average case complexity of multivariate inte- gration, Bull. Amer. Math. Soc. 24 (1991), 185–194.

    Article  MathSciNet  Google Scholar 

  43. S. K. Zaremba, Some applications of multidimensional integration by parts, Ann. Polon. Math. 21 (1968), 85–96.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hickernell, F.J. (1998). Lattice Rules: How Well Do They Measure Up?. In: Hellekalek, P., Larcher, G. (eds) Random and Quasi-Random Point Sets. Lecture Notes in Statistics, vol 138. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1702-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1702-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98554-1

  • Online ISBN: 978-1-4612-1702-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics