Skip to main content

Controlling the Conductivity in Oxide Semiconductors

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

Abstract

Controlling the electrical conductivity in oxide thin films and nanostructures is an important step toward their application in electronics and optoelectronics. Despite recent progress in growth and characterization, the causes of the often-observed unintentional conductivity in oxide semiconductors are still under debate. This chapter focuses on the theory of native defects and doping in oxide semiconductors such as ZnO, SnO2, and TiO2, from the perspective of first-principles calculations based on density functional theory, the DFT + U, and hybrid functionals. The possible causes of unintentional n-type conductivity and the prospects of achieving p-type doping are addressed. In the case of ZnO and SnO2, it is found that the unintentional conductivity is not due to oxygen vacancies or cation interstitials, but rather to the incorporation of donor impurities, with hydrogen being a likely candidate. In the case of TiO2, it is found that oxygen vacancies are shallow donors, but their formation energy is low only in extreme oxygen-poor conditions. Although the calculations were aimed at understanding the behavior of defects and impurities in bulk single crystals, the main results and conclusions are expected to be valid for thin films and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jagadish, C., Pearton, S.J. (eds.): Zinc Oxide Bulk, Thin Films, and Nanostructures. Elsevier, New York (2006)

    Google Scholar 

  2. Look, D.C.: Recent advances in ZnO materials and devices. Mater. Sci. Eng. B 80, 383 (2001)

    Article  Google Scholar 

  3. Ozgür, Ü., Alivov, Y.I., Liu, C., Teke, A., Reshchikov, M.A., Dogan, S., Avrutin, V., Cho, S.-J., Morkoç, H.: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  4. Janotti, A., Van de Walle, C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  5. McCluskey, M.D., Jokela, S.J.: Defects in ZnO. J. Appl. Phys. 106, 071101 (2009)

    Article  Google Scholar 

  6. Gordon, R.G.: Criteria for choosing transparent conductors. Mater. Res. Soc. Bull. 25, 52 (2000)

    Article  CAS  Google Scholar 

  7. Hosono, H.: Recent progress in transparent oxide semiconductors: Materials and device application. Thin Solid Films 515, 6000 (2007)

    Article  CAS  Google Scholar 

  8. Linsebigler, A.L., Lu, G., Yates Jr., J.T.: Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 95, 735 (1995)

    Article  CAS  Google Scholar 

  9. Kröger, F.A.: The Chemistry of Imperfect Crystals. North Holland Publishing, Amsterdam (1974)

    Google Scholar 

  10. Look, D.C., Hemsky, J.W., Sizelove, J.R.: Residual native shallow donor in ZnO. Phys. Rev. Lett. 82, 2552–2555 (1999)

    Article  CAS  Google Scholar 

  11. Tomlins, G.W., Routbort, J.L., Mason, T.O.: Zinc self-diffusion, electrical properties, and defect structure of undoped, single crystal zinc oxide. J. Appl. Phys. Rev. 87, 117–123 (2000)

    Article  CAS  Google Scholar 

  12. Dawar, A.L., Jain, A.K., Jagadish, C.: Semiconducting Transparent Thin Films. Institute of Physics, London (1995)

    Google Scholar 

  13. Nowotny, J., Radecka, M., Rekas, M., Sugihara, S., Vance, E.R., Weppner, W.: Electronic and ionic conductivity of TiO2 single crystal within the n-p transition range. Ceram. Int. 24, 571 (1998)

    Article  CAS  Google Scholar 

  14. Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003)

    Article  CAS  Google Scholar 

  15. Nowotny, M.K., Bak, T., Nowotny, J.: Electrical properties of single crystal TiO2. I. Electrical conductivity. J. Phys. Chem. B 110, 16270 (2006)

    Article  CAS  Google Scholar 

  16. Janotti, A., Van de Walle, C.G.: Oxygen vacancies in ZnO. Appl. Phys. Lett. 87, 122102 (2005)

    Article  Google Scholar 

  17. Janotti, A., Van de Walle, C.G.: New insights into the role of native point defects in ZnO. J. Cryst. Growth 287, 58 (2006)

    Article  CAS  Google Scholar 

  18. Janotti, A., Van de Walle, C.G.: Temperature dependence of Raman scattering in ZnO. Phys. Rev. B 75, 165202 (2007)

    Article  Google Scholar 

  19. Singh, A.K., Janotti, A., Scheffler, M., Van de Walle, C.G.: Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 101, 055502 (2008)

    Article  Google Scholar 

  20. Van de Walle, C.G.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000)

    Article  Google Scholar 

  21. Van de Walle, C.G., Neugebauer, J.: Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626 (2003)

    Article  Google Scholar 

  22. Van de Walle, C.G.: Hydrogen as a shallow center in semiconductors and oxides. Phys. Status Solidi B 235, 89 (2003)

    Article  Google Scholar 

  23. Janotti, A., Van de Walle, C.G.: Hydrogen multicentre bonds. Nat. Mater. 6, 44 (2007)

    Article  CAS  Google Scholar 

  24. Varley, J.B., Janotti, A., Singh, A.K., Van de Walle, C.G.: Hydrogen interactions with acceptor impurities in SnO2: First-principles calculations. Phys. Rev. B 79, 245206 (2009)

    Article  Google Scholar 

  25. McCluskey, M.D., Jokela, S.J.: Sources of n-type conductivity in ZnO. Phys. B 401–402, 355 (2007)

    Article  Google Scholar 

  26. Lyons, J.L., Janotti, A., Van de Walle, C.G.: Role of Si and Ge as impurities in ZnO. Phys. Rev. B 80, 205113 (2009)

    Article  Google Scholar 

  27. Cox, S.F.J., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Piroto Duarte, J., Ayres de Campos, N., Weidinger, A., Lichti, R.L., Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601 (2001)

    Article  CAS  Google Scholar 

  28. Lavrov, E.V., Börrnert, F., Weber, J., Van de Walle, C.G., Helbig, R.: Hydrogen-related defects in ZnO studied by infrared absorption spectroscopy. Phys. Rev. B 66, 165205 (2002)

    Article  Google Scholar 

  29. Jokela, S.J., McCluskey, M.D.: Structure and stability of O-H donors in ZnO from high-pressure and infrared spectroscopy. Phys. Rev. B 72, 113201 (2005)

    Article  Google Scholar 

  30. Lavrov, E.V., Börrnert, F., Weber, J.: Dominant hydrogen-oxygen complex in hydrothermally grown ZnO. Phys. Rev. B 71, 035205 (2005)

    Article  Google Scholar 

  31. Alvin Shi, G., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005)

    Article  Google Scholar 

  32. Lavrov, E.V., Herklotz, F., Weber, J.: Identification of two hydrogen donors in ZnO. Phys. Rev. B 79, 165210 (2009)

    Article  Google Scholar 

  33. Hlaing Oo, W.M., Tabatabaei, S., McCluskey, M.D., Varley, J.B., Janotti, A., Van de Walle, C.G.: Calibrating dipolar interaction in an atomic condensate. Phys. Rev. B 82, 193201 (2010)

    Article  Google Scholar 

  34. Van de Walle, C.G., Laks, D.B., Neumark, G.F., Pantelides, S.T.: First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Phys. Rev. B 47, 9425 (1993)

    Article  Google Scholar 

  35. Van de Walle, C.G., Neugebauer, J.: First-principle calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004)

    Article  Google Scholar 

  36. Van de Walle, C.G., Lyons, J.L., Janotti, A.: Controlling the conductivity of InN. Phys. Status Solidi A 207, 1024 (2010)

    Article  Google Scholar 

  37. Dean, J.A.: Lange’s Handbook of Chemistry, 14th edn. McGraw-Hill, New York (1992)

    Google Scholar 

  38. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)

    Article  Google Scholar 

  39. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965)

    Article  Google Scholar 

  40. Perdew, J.P., Wang, Y.: Liquid-drop model for crystalline metals: Vacancy-formation, cohesive, and face-dependent surface energies. Phys. Rev. Lett. 66, 508 (1991)

    Article  CAS  Google Scholar 

  41. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  42. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767 (1997)

    Article  CAS  Google Scholar 

  43. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003)

    Article  CAS  Google Scholar 

  44. Janotti, A., Varley, J.B., Rinke, P., Umezawa, N., Kresse, G., Van de Walle, C.G.: Hybrid functional studies of the oxygen vacancy in TiO2. Phys. Rev. B 81, 085212 (2010)

    Article  Google Scholar 

  45. Hedin, L.: New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

    Article  Google Scholar 

  46. Godby, R.W., Schlüter, M., Sham, L.J.: Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. Phys. Rev. Lett. 56, 2415–2418 (1986)

    Article  CAS  Google Scholar 

  47. Rinke, P., Janotti, A., Scheffler, M., Van de Walle, C.G.: Defect formation energies without the band-gap problem: combining density-functional theory and the GW approach for the silicon self-interstitial. Phys. Rev. Lett. 102, 026402 (2009)

    Article  Google Scholar 

  48. Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    Article  Google Scholar 

  49. Kresse, G., Joubert, D.: From ultrasoft psuedopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  50. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    Article  CAS  Google Scholar 

  51. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  52. Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829–R858 (2004)

    Article  CAS  Google Scholar 

  53. Look, D.C., Reynolds, D.C., Sizelove, J.R., Jones, R.L., Litton, C.W., Cantwell, G., Harsch, W.C.: Electrical properties of bulk ZnO. Solid State Commun. 105, 399 (1998)

    Article  CAS  Google Scholar 

  54. Look, D.C., Reynolds, D.C., Litton, C.W., Jones, R.L., Eason, D.B., Cantwell, G.: Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy. Appl. Phys. Lett. 81, 1830 (2002)

    Article  CAS  Google Scholar 

  55. Minegishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., Shimizu, A.: Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys. 2 36, L1453 (1997)

    Article  CAS  Google Scholar 

  56. Ye, Z.-Z., Lu, J.-G., Chen, H.-H., Zhang, Y.-Z., Wang, L., Zhao, B.-H., Huang, J.-Y.: Preparation and characterization of p-type ZnO films by DC reactive magnetron sputtering. J. Cryst. Growth 253, 258 (2003)

    Article  CAS  Google Scholar 

  57. Kim, K.K., Kim, H.S., Hwang, D.K., Lim, J.H., Park, S.J.: Realization of p-type ZnO thin films via phosphorous doping and thermal activation of the dopant. Appl. Phys. Lett. 83, 63 (2003)

    Article  CAS  Google Scholar 

  58. Ryu, Y.R., Lee, T.S., White, H.W.: Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition. Appl. Phys. Lett. 83, 87 (2003)

    Article  CAS  Google Scholar 

  59. Xiu, F.X., Yang, Z., Mandalapu, L.J., Zhao, D.T., Liu, J.L.: High-mobility Sb-doped p-type ZnO by molecular beam epitaxy. Appl. Phys. Lett. 87, 152101 (2005)

    Article  Google Scholar 

  60. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S.F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., Kawasaki, M.: Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42 (2005)

    Article  CAS  Google Scholar 

  61. Vlasenko, L.S., Watkins, G.D.: Optical detection of electron paramagnetic resonance in room-temperature electron-irradiated ZnO. Phys. Rev. B 71, 125210 (2005)

    Article  Google Scholar 

  62. Wang, X.J., Vlasenko, L.S., Pearton, S.J., Chen, W.M., Buyanova, I.A.: Oxygen and zinc vacancies in As-grown ZnO single crystals. J. Phys. D Appl. Phys. 42, 175411 (2009)

    Article  Google Scholar 

  63. Oba, F., Togo, A., Tanaka, I., Paier, J., Kresse, G.: Defects energetics in ZnO: A hybrid Hartee-Fock density functional study. Phys. Rev. B 77, 245202 (2008)

    Article  Google Scholar 

  64. Thomas, D.G., Lander, J.J.: Hydrogen as a donor in zinc oxide. J. Chem. Phys. 25, 1136 (1956)

    Article  CAS  Google Scholar 

  65. Wardle, M.G., Goss, J.P., Briddon, P.R.: First-principle study of the diffusion of hydrogen in ZnO. Phys. Rev. Lett. 96, 205504 (2006)

    Article  CAS  Google Scholar 

  66. Shi, G.A., Stavola, M., Pearton, S.J., Thieme, M., Lavrov, E.V., Weber, J.: Hydrogen local modes and shallow donors in ZnO. Phys. Rev. B 72, 195211 (2005)

    Article  Google Scholar 

  67. Myong, S.Y., Baik, S.J., Lee, C.H., Cho, W.Y., Lim, K.S.: Extremely transparent and conductive ZnO: Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using AlCl3(6H2O) as new doping material. Jpn. J. Appl. Phys. 2 36, L1078 (1997)

    Article  Google Scholar 

  68. Ko, H.J., Chen, Y.F., Hong, S.K., Wenisch, H., Yao, T., Look, D.C.: Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy. Appl. Phys. Lett. 77, 3761 (2000)

    Article  CAS  Google Scholar 

  69. Janotti, A., Snow, E., Van de Walle, C.G.: A pathway to p-type wide-band-gap semiconductors. Appl. Phys. Lett. 95, 172109 (2009)

    Article  Google Scholar 

  70. Kolmakov, A., Klenov, D.O., Lilach, Y., Stemmer, S., Moskovits, M.: Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 5, 667 (2005)

    Article  CAS  Google Scholar 

  71. Baik, J., Zielke, M., Kim, M.H., Turner, K.L., Wodtke, A.M., Moskovits, M.: Tin-oxide-nanowire-based electronic nose using heterogeneous catalysis as a functionalization strategy. ACS Nano 4, 3117 (2010)

    Article  CAS  Google Scholar 

  72. Jarzebski, Z.M., Morton, J.P.: Physical properties of SnO2 materials. J. Electrochem. Soc. 123, 299C (1976)

    Article  CAS  Google Scholar 

  73. Fonstad, C.G., Rediker, R.H.: Electrical properties of high-quality stannic oxide crystals. J. Appl. Phys. 42, 2911 (1971)

    Article  CAS  Google Scholar 

  74. Samson, S., Fonstad, C.G.: Defect structure and electronic donor levels in stannic oxide crystals. J. Appl. Phys. 44, 4618 (1973)

    Article  CAS  Google Scholar 

  75. Nagasawa, M., Shionoya, S.: Properties of oxidized SnO2 single crystals. Jpn. J. Appl. Phys. 10, 727 (1971)

    Article  CAS  Google Scholar 

  76. Ohlsen, W.D., Johnson, O.W.: “Vacuum reduction” of rutile. J. App. Phys. 44, 1927 (1973)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSF MRSEC Program under award No. DMR05-20415 and by Saint-Gobain Research. Collaborations with M. D. McCluskey, M. Scheffler, A. K. Singh, N. Umezawa, P. Rinke, G. Kresse are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Janotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Janotti, A., Varley, J.B., Lyons, J.L., Van de Walle, C.G. (2012). Controlling the Conductivity in Oxide Semiconductors. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_2

Download citation

Publish with us

Policies and ethics