Skip to main content

Defect Control and Properties in Bismuth Layer Structured Ferroelectric Single Crystals

  • Chapter
  • First Online:
Lead-Free Piezoelectrics

Abstract

The static and dynamic behaviors of ferroelectric domains are the underlying basis of various functional properties of ferroelectric materials, such as dielectricity, piezoelectricity, ferroelectricity, and electro-optic and acoustic-optic effects. Since the performance of ferroelectric devices is governed by these behaviors, various techniques for enhancing device performance have been widely investigated with the aim of controlling ferroelectric domains [19, 20, 88, 109]. Such control, however, is often prevented not only by a large leakage current but also by undesirable behaviors such as domain clamping [16, 73, 95], fatigue [17, 98], aging [63, 68], imprinting [110], and depoling [98]. Ferroelectric devices thus suffer from degraded polarization and poor reliability due to insufficient control over ferroelectric domains. It is considered that the poor polarization properties, fatigue, and aging, etc. are governed by the interaction between defects and ferroelectric domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arlt G (1990) The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics 104:217–227

    Google Scholar 

  2. Atsuki T, Soyama N, Yonezawa T, Ogi K (1995) Preparation of Bi-based ferroelectric thin-films by sol-gel method. Jpn J Appl Phys 34(9B):5096–5099

    Google Scholar 

  3. Barad Y, Lettieri J, Theis CD, Schlom DG, Gopalan V, Jiang JC, Pan XQ (2001) Probing domain microstructure in ferroelectric Bi4Ti3O12 thin films by optical second harmonic generation. J Appl Phys 89(2):1387–1392

    Google Scholar 

  4. Baux N, Vannier RN, Mairesse G, Nowogrocki G (1996) Oxide ion conductivity in Bi2W1-xMExO6-x/2 (ME=Nb, Ta). Solid State Ionics 91(3–4):243–248

    Google Scholar 

  5. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979

    Google Scholar 

  6. Cao W, Cross LE (1991) Theory of tetragonal twin structures in ferroelectric perovskite with a first-order phase transition. Phys Rev B 44(1):5–12

    Google Scholar 

  7. Chan NH, Sharma RK, Smyth DM (1981) Non-stoichiometry in undoped Batio3. J Am Ceram Soc 64(9):556–562

    Google Scholar 

  8. Chen J, Harmer MP, Smyth DM (1994) Compositional control of ferroelectric fatigue in perovskite ferroelectric ceramics and thin-films. J Appl Phys 76(9):5394–5398

    Google Scholar 

  9. Cohen RE (1992) Origin of ferroelectricity in perovskite oxides. Nature 358:136–138

    Google Scholar 

  10. Cummins SE, Cross LE (1968) Electrical and optical properties of ferroelectric Bi4Ti3O12 single crystals. J Appl Phys 39(5):2268–2274

    Google Scholar 

  11. Das RR, Bhattacharya P, Perez W, Katiyar RS, Desu SB (2002) Ferroelectric properties of laser-ablated Sr1-x A x Bi2Ta2O9 thin films (where A=Ba, Ca). Appl Phys Lett 80(4):637–639

    Google Scholar 

  12. Dawber M, Scott JF (2000) A model for fatigue in ferroelectric perovskite thin films. Appl Phys Lett 76(8):1060–1062

    Google Scholar 

  13. Deleprevier AG, Payne DA (1981) Flux growth of bismuth tungstate, Bi2WO6. J Crystal Growth 54(2):217–222

    Google Scholar 

  14. Desu SB, Vijay DP (1995) Novel fatigue-free layered structure ferroelectric thin-films. Mater Sci Eng B 32(1–2):75–81

    Google Scholar 

  15. Ding Y, Liu JS, Qin HX, Zhu JS, Wang YN (2001) Why lanthanum-substituted bismuth titanate becomes fatigue free in a ferroelectric capacitor with platinum electrodes. Appl Phys Lett 78(26):4175–4177

    Google Scholar 

  16. Drougard ME, Young DR (1954) Domain clamping effect in barium titanate single crystals. Phys Rev 94(6):1561–1564

    Google Scholar 

  17. Duiker HM, Beale PD, Scott JF, Paz de Araujo CA, Melnick BM, Cuchiaro JD, McMillan LD (1990) Fatigue and switching in ferroelectric memories: theory and experiment. J Appl Phys 68(11):5783–5791

    Google Scholar 

  18. Dunitz JD, Orgel LE (1960) Stereochemistry of ionic solids. Adv Inorg Chem 2:1–60

    Google Scholar 

  19. Eng LM (1999) Nanoscale domain engineering and characterization of ferroelectric domains. Nanotechnology 10(4):405–411

    Google Scholar 

  20. Feng D, Ming NB, Hong JF, Yang YS, Zhu JS, Yang Z, Wang YN (1980) Enhancement of 2nd-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains. Appl Phys Lett 37(7):607–609

    Google Scholar 

  21. Fousek J, Janovec V (1969) Orientation of domain walls in twinned ferroelectric crystals. J Appl Phys 40(1):135–142

    Google Scholar 

  22. Frit B, Mercurio JP (1992) The crystal-chemistry and dielectric-properties of the aurivillius family of complex bismuth oxides with perovskite-like layered structures. J Alloys Compd 188(1–2):27–35

    Google Scholar 

  23. Garg A, Barber ZH, Dawber M, Scott JF, Snedden A, Lightfoot P (2003) Orientation dependence of ferroelectric properties of pulsed-laser-ablated Bi4-x Nd x Ti3O12 films. Appl Phys Lett 83(12):2414–2416

    Google Scholar 

  24. Gonzalez A, Jimenez R, Mendiola J, Alemany C, Calzada ML (2002) Ultrathin ferroelectric strontium bismuth tantalate films. Appl Phys Lett 81(14):2599–2601

    Google Scholar 

  25. Goto T, Noguchi Y, Soga M, Miyayama M (2005) Effects of Nd substitution on the polarization properties and electronic structures of bismuth titanate single crystals. Mater Res Bull 40(6):1044–1051

    Google Scholar 

  26. Hamada M, Tabata H, Kawai T (1997) Microstructure and dielectric properties of epitaxial Bi2WO6 deposited by pulsed laser ablation. Thin Solid Films 306(1):6–9

    Google Scholar 

  27. Hayashi K, Ando A, Hamaji Y, Sakabe Y (1998) Study of the valence state of the manganese ions in PbTiO3 ceramics by means of ESR. Jpn J Appl Phys 37(9B):5237–5240

    Google Scholar 

  28. He LX, Vanderbilt D (2003) First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys Rev B 68(13):134103

    Google Scholar 

  29. Hervoches CH, Lightfoot P (1999) A variable-temperature powder neutron diffraction study of ferroelectric Bi4Ti3O12. Chem Mater 11(11):3359–3364

    Google Scholar 

  30. Holman RL, Fulrath RM (1973) Intrinsic nonstoichiometry in lead zirconate lead titanate system determined by Knudsen effusion. J Appl Phys 44(12):5227–5236

    Google Scholar 

  31. Hong S, Colla EL, Kim E, Taylor DV, Tagantsev AK, Muralt P, No K, Setter N (1999) High resolution study of domain nucleation and growth during polarization switching in Pb(Zr, Ti)O3 ferroelectric thin film capacitors. J Appl Phys 86(1):607–613

    Google Scholar 

  32. Hyatt NC, Hriljac JA, Comyn TP (2003) Cation disorder in Bi2Ln2Ti3O12 aurivillius phases (Ln = La, Pr, Nd and Sm). Mater Res Bull 38(5):837–846

    Google Scholar 

  33. Iijima R (2001) Factors controlling the a-axis orientation of strontium bismuth tantalate thin films fabricated by chemical solution deposition. Appl Phys Lett 79(14):2240–2242

    Google Scholar 

  34. Irie H, Miyayama M, Kudo T (2001) Structure dependence of ferroelectric properties of bismuth layer-structured ferroelectric single crystals. J Appl Phys 90(8):4089–4094

    Google Scholar 

  35. Irie H, Saito H, Ohkoshi S, Hashimoto K (2005) Enhanced ferroelectric properties of nitrogen-doped Bi4Ti3O12 thin films. Adv Mater 17(4):491–494

    Google Scholar 

  36. Ishibashi Y, Iwata M (2007) Domains and domain walls in ferroelectric Bi4Ti3O12: a system with biquadratic order parameter coupling. Jpn J Appl Phys 46(1):272–275

    Google Scholar 

  37. Ishikawa K, Funakubo H (1999) Electrical properties of (001)- and (116)-oriented epitaxial SrBi2Ta2O9 thin films prepared by metalorganic chemical vapor deposition. Appl Phys Lett 75(13):1970–1972

    Google Scholar 

  38. Ishikawa K, Watanabe T, Funakubo H (2001) Preparation of Bi2WO6 thin films by metalorganic chemical vapor deposition and their electrical properties. Thin Solid Films 392(1):128–133

    Google Scholar 

  39. Islam MS, Lazure S, Vannier RN, Nowogrocki G, Mairesse G (1998) Structural and computational studies of Bi2WO6 based oxygen ion conductors. J Mater Chem 8(3):655–660

    Google Scholar 

  40. Iwata M, Morishita T, Aoyagi R, Maeda M, Suzuki I, Ishibashi Y (2007) In situ observation of polarization reversal of Bi4Ti3O12 with 90 degrees domain walls. Jpn J Appl Phys 46(6A):3485–3490

    Google Scholar 

  41. Izaki T, Haneda H, Watanabe A, Uchida Y, Tanaka J, Shirasaki S (1992) Effects of Mn ions on the piezoelectric property of (Pb, La)(Zr, Ti)O3. Jpn J Appl Phys 31(9B):3045–3047

    Google Scholar 

  42. Izumi F (2003) Development and applications of the pioneering technology of structure refinement from powder diffraction data. J Ceram Soc Jpn 111(9):617–623

    Google Scholar 

  43. Izumi F, Ikeda T (2000) Mater Sci Forum 321–324:198–203

    Google Scholar 

  44. Jo W, Yi GC, Noh TW, Ko DK, Cho YS, Kwun SI (1992) Structural and electrooptic properties of laser ablated Bi4Ti3O12 thin-films on SrTiO3(100) and SrTiO3(110). Appl Phys Lett 61(13):1516–1518

    Google Scholar 

  45. Joshi PC, Krupanidhi SB (1993) Switching, fatigue, and retention in ferroelectric Bi4Ti3O12 thin-films. Appl Phys Lett 62(16):1928–1930

    Google Scholar 

  46. Joshi PC, Mansingh A, Kamalasanan MN, Chandra S (1991) Structural and optical-properties of ferroelectric Bi4Ti3O12 thin-films by sol-gel technique. Appl Phys Lett 59(19):2389–2390

    Google Scholar 

  47. Kamiyama T, Oikawa K, Tsuchiya N, Osawa M, Asano H, Watanabe N, Furusaka M, Satoh S, Fujikawa I, Ishigaki T, Izumi F (1995) A New TOF neutron powder diffractometer with arrays of one-dimensional PSDs. Physica B 213:875–877

    Google Scholar 

  48. Katayama S, Noguchi Y, Miyayama M (2006) Influence of annealing on domain structures of bismuth-titanate-based crystals. Key Eng Materials 320:27–30

    Google Scholar 

  49. Kato K, Zheng C, Finder JM, Dey SK, Torii Y (1998) Sol-gel route to ferroelectric layer-structured perovskite SrBi2Ta2O9 and SrBi2Nb2O9 thin films. J Am Ceram Soc 81(7):1869–1875

    Google Scholar 

  50. Kawashima Y, Kijima T, Ishiwara H (2003) Ferroelectric characteristics control of (Bi, La)4Ti3O12 and SrBi2Ta2O9 films by addition of silicates and germanates. Jpn J Appl Phys 42(4B):2037–2040

    Google Scholar 

  51. Kijima T, Kawashima Y, Idemoto Y, Ishiwara H (2002) Effect of high-pressure oxygen annealing on Bi2SiO5-added ferroelectric thin films. Jpn J Appl Phys 41(10B):L1164–L1166

    Google Scholar 

  52. Kikuchi T (1977) Synthesis of a new, mix-layered bismuth titanate SrBi8Ti7O27. J Less Common Metals 52(1):163–165

    Google Scholar 

  53. Kikuchi T, Watanabe A, Uchida K (1977) Family of mixed-layer type bismuth compounds. Mater Res Bull 12(3):299–304

    Google Scholar 

  54. Kim SJ, Moriyoshi C, Kimura S, Kuroiwa Y, Kato K, Takata M, Noguchi Y, Miyayama M (2007) Direct observation of oxygen stabilization in layered ferroelectric Bi3.25La0.75Ti3O12. Appl Phys Lett 91(6):062913

    Google Scholar 

  55. Kitanaka Y, Noguchi Y, Miyayama M (2007) Ferroelectric domain structure and c-axis polarization switching in monoclinic Bi4Ti3O12 single crystals. Appl Phys Lett 90(20):202904

    Google Scholar 

  56. Kitanaka Y, Noguchi Y, Miyayama M (2010) Oxygen-vacancy-induced 90 degrees-domain clamping in ferroelectric Bi4Ti3O12 single crystals. Phys Rev B 81(9):094114

    Google Scholar 

  57. Kizaki Y, Noguchi Y, Miyayama M (2006) Defect control for low leakage current in K0.5Na0.5NbO3 single crystals. Appl Phys Lett 89(14):142910

    Google Scholar 

  58. Kobayashi J (1958) Growing of ferroelectric PbTiO3 crystals. J Appl Phys 29(5):866–867

    Google Scholar 

  59. Kojima T, Sakai T, Watanabe T, Funakubo H, Saito K, Osada M (2002) Large remanent polarization of (Bi, Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition. Appl Phys Lett 80(15):2746–2748

    Google Scholar 

  60. Kresse G, Hafner J (1994) Ab-Initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys Rev B 49(20):14251–14269

    Google Scholar 

  61. Krok F, Bogusz W, Jakubowski W, Dygas JR, Bangobango D (1994) Studies on preparation and electrical-conductivity of BiCoVO x . Solid State Ionics 70:211–214

    Google Scholar 

  62. Kuroiwa Y, Aoyagi S, Sawada A (2001) Evidence for Pb-O covalency in tetragonal PbTiO3. Phys Rev Lett 87(21):217601–217604

    Google Scholar 

  63. Lambeck PV, Jonker GH (1986) The nature of domain stabilization in ferroelectric perovskites. J Phys Chem Solids 47(5):453–461

    Google Scholar 

  64. Langreth DC, Perdew JP (1980) Theory of nonuniform electronic systems. 1. Analysis of the gradient approximation and a generalization that works. Phys Rev B 21(12):5469–5493

    Google Scholar 

  65. Li YL, Chen LQ, Asayama G, Schlom DG, Zurbuchen MA, Streiffer SK (2004) Ferroelectric domain structures in SrBi2Nb2O9 epitaxial thin films: electron microscopy and phase-field simulations. J Appl Phys 95(11):6332–6340

    Google Scholar 

  66. Li YL, Hu SY, Liu ZK, Chen LQ (2002) Effect of electrical boundary conditions on ferroelectric domain structures in thin films. Appl Phys Lett 81(3):427–429

    Google Scholar 

  67. Lim M, Joshi V, Narayan S, Celinska J, Karasawa J (2002) Sub-100 nm SrBi2Ta2O9 film with ultrathin BiTaO4 capping layer for 3 V or lower-voltage ferroelectric memory operation. Appl Phys Lett 81(10):1863–1865

    Google Scholar 

  68. Lupascu DC, Genenko YA, Balke N (2006) Aging in ferroelectrics. J Am Ceram Soc 89(1):224–229

    Google Scholar 

  69. Merz WJ (1954) Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys Rev 95(3):690–698

    Google Scholar 

  70. Meyer B, Vanderbilt D (2002) Ab initio study of ferroelectric domain walls in PbTiO3. Phys Rev B 65(10):104111

    Google Scholar 

  71. Mihara T, Yoshimori H, Watanabe H, Dearaujo CAP (1995) Characteristics of bismuth layered SrBi2Ta2O9 thin-film capacitors and comparison with Pb(Zr, Ti)O3. Jpn J Appl Phys 34(9B):5233–5239

    Google Scholar 

  72. Muramatsu K, Watanabe A, Goto M (1978) Flux growth of Bi2WO6 single-crystal below transformation temperature. J Crystal Growth 44(1):50–52

    Google Scholar 

  73. Nagarajan V, Roytburd A, Stanishevsky A, Prasertchoung S, Zhao T, Chen L, Melngailis J, Auciello O, Ramesh R (2003) Dynamics of ferroelastic domains in ferroelectric thin films. Nat Mater 2(1):43–47

    Google Scholar 

  74. Nagata H (2008) Electrical properties and tracer diffusion of oxygen in some Bi-based lead-free piezoelectric ceramics. J Ceram Soc Jpn 116(1350):271–277

    Google Scholar 

  75. Noguchi T, Hase T, Miyasaka Y (1996) Analysis of the dependence of ferroelectric properties of strontium bismuth tantalate (SET) thin films on the composition and process temperature. Jpn J Appl Phys 35(9B):4900–4904

    Google Scholar 

  76. Noguchi Y, Matsumoto T, Miyayama M (2005) Impact of defect control on the polarization properties in Bi4Ti3O12 ferroelectric single crystals. Jpn J Appl Phys 44(16–19):L570–L572

    Google Scholar 

  77. Noguchi YJ, Miwa I, Goshima Y, Miyayama M (2000) Defect control for large remanent polarization in bismuth titanate ferroelectrics doping effect of higher-valent cations. Jpn J Appl Phys 39(12B):L1259–L1262

    Google Scholar 

  78. Noguchi Y, Miyayama M (2001) Large remanent polarization of vanadium-doped Bi4Ti3O12. Appl Phys Lett 78(13):1903–1905

    Google Scholar 

  79. Noguchi Y, Miyayama M, Kudo T (2000) Ferroelectric properties of intergrowth Bi4Ti3O12-SrBi4Ti4O15 ceramics. Appl Phys Lett 77(22):3639–3641

    Google Scholar 

  80. Noguchi Y, Miyayama M, Kudo T (2001) Direct evidence of A-site-deficient strontium bismuth tantalate and its enhanced ferroelectric properties. Phys Rev B 63(21):214102

    Google Scholar 

  81. Noguchi Y, Miyayama M, Oikawa K, Kamiyama T, Osada M, Kakihana M (2002) Defect engineering for control of polarization properties in SrBi2Ta2O9. Jpn J Appl Phys 41(11B):7062–7075

    Google Scholar 

  82. Noguchi Y, Murata K, Miyayama M (2007) Effects of defect control on the polarization properties in Bi2WO6-based single crystals. Ferroelectrics 355:55–60

    Google Scholar 

  83. Noguchi Y, Soga M, Takahashi M, Miyayama M (2005) Oxygen stability and leakage current mechanism in ferroelectric La-substituted Bi4Ti3O12 single crystals. Jpn J Appl Phys 44(9B):6998–7002

    Google Scholar 

  84. Ohta T, Izumi F, Oikawa K, Kamiyama T (1997) Rietveld analysis of intensity data taken on the TOF neutron powder diffractometer VEGA. Physica B 234:1093–1095

    Google Scholar 

  85. Onodera A, Yoshio K, Yamashita H (2003) Structural study of intermediate phase in layered perovskite SrBi2Ta2O9 single crystal. Jpn J Appl Phys 42(9B):6218–6221

    Google Scholar 

  86. Osada M, Tada M, Kakihana M, Watanabe T, Funakubo M (2001) Cation distribution and structural instability in Bi4-x La x Ti3O12. Jpn J Appl Phys 40(9B):5572–5575

    Google Scholar 

  87. Park BH, Kang BS, Bu SD, Noh TW, Lee J, Jo W (1999) Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401(6754):682–684

    Google Scholar 

  88. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82(4):1804–1811

    Google Scholar 

  89. Paz de Araujo CA, Cuchiaro JD, McMillan LD, Scott MC, Scott JF (1995) Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374:627–629

    Google Scholar 

  90. Rae AD, Thompson JG, Withers RL (1991) Structure refinement of commensurately modulated bismuth tungstate, Bi2WO6. Acta Crystallogr B 47:870–881

    Google Scholar 

  91. Rae AD, Thompson JG, Withers RL, Willis AC (1990) Structure refinement of commensurately modulated bismuth titanate, Bi4Ti3O12. Acta Crystallogr B 46:474–487

    Google Scholar 

  92. Ravindran P, Kjekshus A, Fjellvag H, Delin A, Eriksson O (2002) Ground-state and excited-state properties of LaMnO3 from full-potential calculations. Phys Rev B 65(6):064445

    Google Scholar 

  93. Raymond MV, Smyth DM (1996) Defects and charge transport in perovskite ferroelectrics. J Phys Chem Solids 57(10):1507–1511

    Google Scholar 

  94. Resta R, Posternak M, Baldereschi A (1993) Towards a quantum-theory of polarization in ferroelectrics – the case of KNbO3. Phys Rev Lett 70(7):1010–1013

    Google Scholar 

  95. Robels U, Arlt G (1993) Domain-wall clamping in ferroelectrics by orientation of defects. J Appl Phys 73(7):3454–3460

    Google Scholar 

  96. Scott JF, Alexe M, Zakharov ND, Pignolet A, Curran C, Hesse D (1998) Nano-phase SBT-family ferroelectric memories. Integr Ferroelectrics 21(1–4):1–14

    Google Scholar 

  97. Scott JF, Dawber M (2000) Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl Phys Lett 76(25):3801–3803

    Google Scholar 

  98. Scott JF, Dearaujo CAP (1989) Ferroelectric memories. Science 246(4936):1400–1405

    Google Scholar 

  99. Shimakawa Y, Kubo Y, Nakagawa Y, Kamiyama T, Asano H, Izumi F (1999) Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl Phys Lett 74(13):1904–1906

    Google Scholar 

  100. Shimakawa Y, Kubo Y, Tauchi Y, Asano H, Kamiyama T, Izumi F, Hiroi Z (2001) Crystal and electronic structures of Bi4-x La x Ti3O12 ferroelectric materials. Appl Phys Lett 79(17):2791–2793

    Google Scholar 

  101. Sih B, Tang J, Dong M, Ye ZG (2001) Ferroelectric SrBi2Ta2O9 single-crystal growth and characterization. J Mater Res 16(6):1726–1733

    Google Scholar 

  102. Snedden A, Lightfoot P, Dinges T, Islam MS (2004) Defect and dopant properties of the Aurivillius phase Bi4Ti3O12. J Solid State Chem 177(10):3660–3665

    Google Scholar 

  103. Soga M, Noguchi Y, Miyayama M, Okino H, Yamamoto T (2004) Domain structure and polarization properties of lanthanum-substituted bismuth titanate single crystals. Appl Phys Lett 84(1):100–102

    Google Scholar 

  104. Takahashi M, Nguchi Y, Miyayama M (2003) Effects of V-doping on mixed conduction properties of bismuth titanate single crystals. Jpn J Appl Phys 42(9B):6222–6225

    Google Scholar 

  105. Takahashi M, Noguchi Y, Miyayama M (2002) Electrical conduction mechanism in Bi4Ti3O12 single crystal. Jpn J Appl Phys 41(11B):7053–7056

    Google Scholar 

  106. Takahashi M, Noguchi Y, Miyayama M (2004) Estimation of ionic and hole conductivity in bismuth titanate polycrystals at high temperatures. Solid State Ionics 172(1–4):325–329

    Google Scholar 

  107. Takata M, Nishibori E, Sakata M (2001) Charge density studies utilizing powder diffraction and MEM. Exploring of high Tc superconductors, C60 superconductors and manganites. Z Kristallogr 216(2):71–86

    Google Scholar 

  108. Takeda H, Nishida T, Okamura S, Shiosaki T (2005) Crystal growth of bismuth tungstate Bi2WO6 by slow cooling method using borate fluxes. J Eur Ceram Soc 25(12):2731–2734

    Google Scholar 

  109. Wada S, Suzuki S, Noma T, Suzuki T, Osada M, Kakihana M, Park SE, Cross LE, Shrout TR (1999) Enhanced piezoelectric property of barium titanate single crystals with engineered domain configurations. Jpn J Appl Phys 38(9B):5505–5511

    Google Scholar 

  110. Warren WL, Tuttle BA, Dimos D (1995) Ferroelectric fatigue in perovskite oxides. Appl Phys Lett 67(10):1426–1428

    Google Scholar 

  111. Watanabe H, Mihara T, Yoshimori H, Dearaujo CAP (1995) Preparation of ferroelectric thin-films of bismuth layer structured compounds. Jpn J Appl Phys 34(9B):5240–5244

    Google Scholar 

  112. Watanabe T, Saiki A, Saito K, Funakubo H (2001) Film thickness dependence of ferroelectric properties of c-axis-oriented epitaxial Bi4Ti3O12 thin films prepared by metalorganic chemical vapor deposition. J Appl Phys 89(7):3934–3938

    Google Scholar 

  113. Withers RL, Thompson JG, Rae AD (1991) The crystal-chemistry underlying ferroelectricity in Bi4Ti3O12, Bi3TiNbO9, and Bi2WO6. J Solid State Chem 94(2):404–417

    Google Scholar 

  114. Wu WB, Fumoto K, Oishi Y, Okuyama M, Hamakawa Y (1996) Bismuth titanate thin films on Si with buffer layers prepared by laser ablation and their electrical properties. Jpn J Appl Phys 35(2B):1560–1563

    Google Scholar 

  115. Xiao Y, Shenoy VB, Bhattacharya K (2005) Depletion layers and domain walls in semiconducting ferroelectric thin films. Phys Rev Lett 95(24):247603

    Google Scholar 

  116. Yamamoto K, Kitanaka Y, Suzuki M, Miyayama M, Noguchi Y, Moriyoshi C, Kuroiwa Y (2007) High-oxygen-pressure crystal growth of ferroelectric Bi4Ti3O12 single crystals. Appl Phys Lett 91(16):162909

    Google Scholar 

  117. Yamamoto K, Suzuki M, Noguchi Y, Miyayama M (2008) High-performance Bi0.5Na0.5TiO3 single crystals grown by high-oxygen-pressure flux method. Jpn J Appl Phys 47(9):7623–7629

    Google Scholar 

  118. Yanovskii VK, Voronkova VI (1986) Polymorphism and properties of Bi2WO6 and Bi2MoO6. Phys Status Solid A Appl Res 93(1):57–66

    Google Scholar 

  119. Zhang LX, Chen W, Ren X (2004) Large recoverable electrostrain in Mn-doped (Ba, Sr)TiO3 ceramics. Appl Phys Lett 85(23):5658–5660

    Google Scholar 

  120. Zhang QS, Goddard WA (2006) Charge and polarization distributions at the 90 degrees domain wall in barium titanate ferroelectric. Appl Phys Lett 89(18):182903

    Google Scholar 

  121. Zurbuchen MA, Asayama G, Schlom DG, Streiffer SK (2002) Ferroelectric domain structure of SrBi2Nb2O9 epitaxial thin films. Phys Rev Lett 88(10):107601

    Google Scholar 

Download references

Acknowledgment

A series of the study in this chapter was partly supported by Grant-in Aid for Scientific Research on Priority Areas “Novel States of Matter Induced by Frustration” (19052002), Grant-in-Aid for Scientific Research(A) (21246096) and the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Noguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Noguchi, Y., Miyayama, M. (2012). Defect Control and Properties in Bismuth Layer Structured Ferroelectric Single Crystals. In: Priya, S., Nahm, S. (eds) Lead-Free Piezoelectrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9598-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9598-8_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-9597-1

  • Online ISBN: 978-1-4419-9598-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics