Skip to main content

Comparison of Metaheuristics

  • Chapter
  • First Online:
Book cover Handbook of Metaheuristics

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 146))

  • 12k Accesses

Abstract

Metaheuristics are truly diverse in nature—under the overarching theme of performing operations to escape local optima, algorithms as different as ant colony optimization, tabu search, harmony search, and genetic algorithms have emerged. Due to the unique functionality of each type of metaheuristic, comparison of metaheuristics is in many ways more difficult than other algorithmic comparisons. In this chapter, we discuss techniques for meaningful comparison of metaheuristics. We discuss how to create and classify instances in a new testbed and how to make sure other researchers have access to the problems for future metaheuristic comparisons. Further, we discuss the disadvantages of large parameter sets and how to measure complicating parameter interactions in a metaheuristic’s parameter space. Last, we discuss how to compare metaheuristics in terms of both solution quality and runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ahuja, R., Orlin, J.: Use of representative operation counts in computational testing of algorithms. INFORMS J. Comput. 8(3), 318–330 (1996)

    Article  Google Scholar 

  2. Archetti, C., Feillet, D., Hertz, A., Speranza, M.G.: The capacitated team orienteering and profitable tour problems. J. Oper. Res. Soc. 60(6), 831–842 (2009)

    Article  Google Scholar 

  3. Bailey, D.: Twelve ways to fool the masses when giving performance results on parallel computers. Supercomput. Rev. 4(8), 54–55 (1991)

    Google Scholar 

  4. Bull, M., Smith, L., Pottage, L., Freeman, R.: Benchmarking Java against C and Fortran for scientific applications. In: ACM 2001 Java Grande/ISCOPE Conference, pp. 97–105. ACM, New York (2001)

    Google Scholar 

  5. Chao, I.M.: Algorithms and solutions to multi-level vehicle routing problems. Ph.D. thesis, University of Maryland, College Park, MD (1993)

    Google Scholar 

  6. Chen, S., Golden, B., Wasil, E.: The split delivery vehicle routing problem: applications, algorithms, test problems, and computational results. Networks 49, 318–329 (2007)

    Article  Google Scholar 

  7. Christofides, N., Eilon, S.: An algorithm for the vehicle dispatching problem. Oper. Res. Q. 20(3), 309–318 (1969)

    Article  Google Scholar 

  8. Coello, C.: Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput. Intel. Mag. 1(1), 28–36 (2006)

    Article  Google Scholar 

  9. Coy, S., Golden, B., Runger, G., Wasil, E.: Using experimental design to find effective parameter settings for heuristics. J. Heuristics 7(1), 77–97 (2001)

    Article  Google Scholar 

  10. Deb, K., Agarwal, S.: Understanding interactions among genetic algorithm parameters. In: Foundations of Genetic Algorithms, pp. 265–286. Morgan Kauffman, San Mateo, CA (1998)

    Google Scholar 

  11. Dongarra, J.: Performance of various computers using standard linear equations software. Tech. rep., University of Tennessee (2009)

    Google Scholar 

  12. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT, Cambridge (2004)

    Book  Google Scholar 

  13. Fischetti, M., Salazar González, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

    Article  Google Scholar 

  14. Gamvros, I., Golden, B., Raghavan, S.: The multilevel capacitated minimum spanning tree problem. INFORMS J. Comput. 18(3), 348–365 (2006)

    Article  Google Scholar 

  15. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective travelling salesman problem. Eur. J. Oper. Res. 106(2–3), 539–545 (1998)

    Article  Google Scholar 

  16. Glover, F.: Tabu search: a tutorial. Interfaces 20(4), 74–94 (1990)

    Article  Google Scholar 

  17. Hartmann, S., Kolisch, R.: Experimental evaluation of state-of-the-art heuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 127(2), 394–407 (2000)

    Article  Google Scholar 

  18. Hollasch, S.: Four-space visualization of 4d objects. Ph.D. thesis, Arizona State University, Tempe, Arizona (1991)

    Google Scholar 

  19. Jans, R., Degraeve, Z.: Meta-heuristics for dynamic lot sizing: a review and comparison of solution approaches. Eur. J. Oper. Res. 177(3), 1855–1875 (2007)

    Article  Google Scholar 

  20. Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

    Article  Google Scholar 

  21. Li, F., Golden, B., Wasil, E.: The open vehicle routing problem: algorithms, large-scale test problems, and computational results. Comput. Oper. Res. 34(10), 2918–2930 (2007)

    Article  Google Scholar 

  22. Li, F., Golden, B., Wasil, E.: A record-to-record travel algorithm for solving the heterogeneous fleet vehicle routing problem. Comput. Oper. Res. 34(9), 2734–2742 (2007)

    Article  Google Scholar 

  23. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996)

    Google Scholar 

  24. Montgomery, D.: Design and Analysis of Experiments. Wiley, New York (2006)

    Google Scholar 

  25. Nummela, J., Julstrom, B.: An effective genetic algorithm for the minimum-label spanning tree problem. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 553–557. ACM, New York (2006)

    Google Scholar 

  26. Paquete, L., Stützle, T.: Design and analysis of stochastic local search for the multiobjective traveling salesman problem. Comput. Oper. Res. 36(9), 2619–2631 (2009)

    Article  Google Scholar 

  27. Plackett, R., Burman, J.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  Google Scholar 

  28. Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Google Scholar 

  29. Sawai, H., Kizu, S.: Parameter-free genetic algorithm inspired by “disparity theory of evolution”. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel H.P., (eds.) Parallel Problem Solving from Nature – PPSN V, LNCS, vol. 1498, pp. 702–711. Springer Berlin / Heidelberg (1998)

    Chapter  Google Scholar 

  30. Silberholz, J., Golden, B.: The effective application of a new approach to the generalized orienteering problem. J. Heuristics 16(3), 393–415 (2010)

    Article  Google Scholar 

  31. Wang, Q., Sun, X., Golden, B.L.: Using artificial neural networks to solve generalized orienteering problems. In: Dagli, C., Akay, M., Chen, C., Fernández, B., Ghosh J., (eds.) Intelligent Engineering Systems Through Artificial Neural Networks, vol. 6, pp. 1063–1068. ASME Press, New York (1996)

    Google Scholar 

  32. Xiong, Y., Golden, B., Wasil, E.: A one-parameter genetic algorithm for the minimum labeling spanning tree problem. IEEE Trans. Evol. Comput. 9(1), 55–60 (2005)

    Article  Google Scholar 

  33. Xu, J., Kelly, J.: A network flow-based tabu search heuristic for the vehicle routing problem. Transp. Sci. 30(4), 379–393 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Silberholz or Bruce Golden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Silberholz, J., Golden, B. (2010). Comparison of Metaheuristics. In: Gendreau, M., Potvin, JY. (eds) Handbook of Metaheuristics. International Series in Operations Research & Management Science, vol 146. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1665-5_21

Download citation

Publish with us

Policies and ethics