Skip to main content

Slit-Robo Signaling in Ocular Angiogenesis

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 664))

Abstract

Slit-Robo signaling was firstly discovered as a major repellent pathway at the midline of the central nervous system. Intense investigation found that this pathway also plays an important role in other biological process including angiogenesis. Robo4 is the vascular endothelial cell specific member of Robo family. It was found that Slit-Robo signaling can inhibit endothelial cell migration, tube formation and vascular permeability. Slit-Robo signaling also plays an important role in embryonic and tumor angiogenesis. In animal model of ocular angiogenesis, addition of Slit inhibited laser induced choroidal neovascularization, oxygen induced retinopathy and VEGF induced retinal permeability in a Robo4 dependent manner. Recent data demonstrates that Robo1 and Robo4 form a heterodimer in endothelial cells, The role of this heterodimer in counteracting VEGF signaling is unknown. Further investigation is required to better understand Slit-Robo signaling and develop novel therapy for angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RH (2006) Nerve cell signposts in the blood vessel roadmap. Circ Res 98:440–442

    Article  CAS  PubMed  Google Scholar 

  • Bedell VM, Yeo SY, Park KW et al (2005) roundabout4 is essential for angiogenesis in vivo. Proc Natl Acad Sci U S A 102:6373–6378

    Article  CAS  PubMed  Google Scholar 

  • Campochiaro PA, Hackett SF (2003) Ocular neovascularization: a valuable model system. Oncogene 22:6537–6548

    Article  CAS  PubMed  Google Scholar 

  • Dallol A, Forgacs E, Martinez A et al (2002) Tumour specific promoter region methylation of the human homologue of the Drosophila Roundabout gene DUTT1 (ROBO1) in human cancers. Oncogene 21:3020–3028

    Article  CAS  PubMed  Google Scholar 

  • Friedman DS, O’Colmain BJ, Munoz B et al (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122:564–572

    Article  PubMed  Google Scholar 

  • Gariano RF, Gardner TW (2005) Retinal angiogenesis in development and disease. Nature 438:960–966

    Article  CAS  PubMed  Google Scholar 

  • Hohenester E, Hussain S, Howitt JA (2006) Interaction of the guidance molecule slit with cellular receptors. Biochem Soc Trans 34:418–421

    Article  CAS  PubMed  Google Scholar 

  • Huminiecki L, Gorn M, Suchting S et al (2002) Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics 79:547–552

    Article  CAS  PubMed  Google Scholar 

  • Jones CA, London NR, Chen H et al (2008) Robo4 stabilizes the vascular network by inhibiting pathologic angiogenesis and endothelial hyperpermeability. Nat Med 14:448–453

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Samant GV, Pramanik K et al (2008) Silencing of directional migration in roundabout4 knockdown endothelial cells. BMC Cell Biol 9:61

    Article  PubMed  Google Scholar 

  • Kidd T, Brose K, Mitchell KJ et al (1998) Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell 92:205–215

    Article  CAS  PubMed  Google Scholar 

  • Li HS, Chen JH, Wu W et al (1999) Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96:807–818

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Hou J, Hu X et al (2006) Neuronal chemorepellent Slit2 inhibits vascular smooth muscle cell migration by suppressing small GTPase Rac1 activation. Circ Res 98:480–489

    Article  CAS  PubMed  Google Scholar 

  • Narayan G, Goparaju C, Arias-Pulido H et al (2006) Promoter hypermethylation-mediated inactivation of multiple Slit-Robo pathway genes in cervical cancer progression. Mol Cancer 5:16

    Article  PubMed  Google Scholar 

  • Park KW, Morrison CM, Sorensen LK et al (2003) Robo4 is a vascular-specific receptor that inhibits endothelial migration. Dev Biol 261:251–267

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld PJ, Brown DM, Heier JS et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355:1419–1431

    Article  CAS  PubMed  Google Scholar 

  • Rothberg JM, Jacobs JR, Goodman CS et al (1990) Slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes Dev 4:2169–2187

    Article  CAS  PubMed  Google Scholar 

  • Seth P, Lin Y, Hanai J et al (2005) Magic roundabout, a tumor endothelial marker: expression and signaling. Biochem Biophys Res Commun 332:533–541

    Article  CAS  PubMed  Google Scholar 

  • Sheldon H, Andre M, Legg JA et al (2009) Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 23:513–522

    Article  CAS  PubMed  Google Scholar 

  • Suchting S, Heal P, Tahtis K et al (2005) Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB J 19:121–123

    CAS  PubMed  Google Scholar 

  • Varma R, Macias GL, Torres M et al (2007) Biologic risk factors associated with diabetic retinopathy: the Los Angeles Latino Eye Study. Ophthalmology 114:1332–1340

    Article  PubMed  Google Scholar 

  • Wang B, Xiao Y, Ding BB et al (2003) Induction of tumor angiogenesis by Slit-Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell 4:19–29

    Article  PubMed  Google Scholar 

  • Zou HD, Zhang X, Xu X et al (2005) Prevalence study of age-related macular degeneration in Caojiadu blocks, Shanghai. Zhonghua Yan Ke Za Zhi 41:15–19

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank the following support to HC: Kaisi Funds at Sun Yat-sen University, JSIEC Starting grants; to ST: National Key Science and Technology Project from ‘Tenth Five-Year Plan’ of China, National Natural Science Foundation of China; to KZ: National Institutes of Health Grants R01EY14428, R01EY14448, P30EY014800, and GCRCM01-RR00064, Foundation Fighting Blindness, the Macular Vision Research Foundation, Veterans Affairs Merit Award, and Research to Prevent Blindness to NRL: the Ruth L. Kirschstein National Research Service Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyu Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, H., Zhang, M., Tang, S., London, N.R., Li, D.Y., Zhang, K. (2010). Slit-Robo Signaling in Ocular Angiogenesis. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_52

Download citation

Publish with us

Policies and ethics