Skip to main content

Spectral Domain Optical Coherence Tomography and Adaptive Optics: Imaging Photoreceptor Layer Morphology to Interpret Preclinical Phenotypes

  • Chapter
  • First Online:
Retinal Degenerative Diseases

Abstract

Recent years have seen the emergence of advances in imaging technology that enable in vivo evaluation of the living retina. Two of the more promising techniques, spectral domain optical coherence tomography (SD-OCT) and adaptive optics (AO) fundus imaging provide complementary views of the retinal tissue. SD-OCT devices have high axial resolution, allowing assessment of retinal lamination, while the high lateral resolution of AO allows visualization of individual cells. The potential exists to use one modality to interpret results from the other. As a proof of concept, we examined the retina of a 32 year-old male, previously diagnosed with a red-green color vision defect. Previous AO imaging revealed numerous gaps throughout his cone mosaic, indicating that the structure of a subset of cones had been compromised. Whether the affected cells had completely degenerated or were simply morphologically deviant was not clear. Here an AO fundus camera was used to re-examine the retina (~6 years after initial exam) and SD-OCT to examine retinal lamination. The static nature of the cone mosaic disruption combined with the normal lamination on SD-OCT suggests that the affected cones are likely still present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Carroll J, Neitz M, Hofer H et al (2004) Functional photoreceptor loss revealed with adaptive optics: an alternate cause for color blindness. Proc Natl Acad Sci USA 101(22):8461–8466

    Article  CAS  PubMed  Google Scholar 

  • Carroll J, Porter J, Neitz J et al (2005) Adaptive optics imaging reveals effects of human cone opsin gene disruption. Invest Ophthalmol Vis Sci 46 ARVO E-Abstract:4564

    Google Scholar 

  • Choi SS, Doble N, Hardy JL et al (2006) In vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function. Invest Ophthalmol Vis Sci 47(5):2080–2092

    Article  PubMed  Google Scholar 

  • Curcio CA, Sloan KR, Kalina RE et al (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  CAS  PubMed  Google Scholar 

  • Deeb SS, Lindsey DT, Hibiya Y et al (1992) Genotype-phenotype relationships in human red/green color-vision defects: molecular and psychophysical studies. Am J Hum Genet 51:687–700

    CAS  PubMed  Google Scholar 

  • Duncan JL, Zhang Y, Gandhi J et al (2007) High-resolution imaging with adaptive optics in patients with inherited retinal degeneration. Invest Ophthalmol Vis Sci 48:3283–3291

    Article  PubMed  Google Scholar 

  • Fernández EJ, Vabre L, Hermann B et al (2006) Adaptive optics with a magnetic deformable mirror: Applications in the human eye. Opt Express 14(20):8900–8917

    Article  PubMed  Google Scholar 

  • Hayashi T, Motulsky AG, Deeb SS (1999) Position of a ‘green-red’ hybrid gene in the visual pigment array determines colour-vision phenotype. Nat Genet 22:90–93

    Article  CAS  PubMed  Google Scholar 

  • Hood DC, Lin CE, Lazow MA et al (2009) Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography (fdOCT). Invest Ophthalmol Vis Sci 50(5):2328–2336

    Article  PubMed  Google Scholar 

  • Jacobson SG, Aleman TS, Cideciyan AV et al (2007) Human cone photoreceptor dependence on RPE65 isomerase. Proc Natl Acad Sci USA 104(38):15123–15128

    Article  CAS  PubMed  Google Scholar 

  • Jacobson SG, Aleman TS, Cideciyan AV et al (2005) Identifying photoreceptors in blind eyes caused by RPE65 mutations: Prerequisite for human gene therapy success. Proc Natl Acad Sci USA 102(17):6177–6182

    Article  CAS  PubMed  Google Scholar 

  • Jagla WM, Jägle H, Hayashi T et al (2002) The molecular basis of dichromatic color vision in males with multiple red and green visual pigment genes. Hum Mol Genet 11:23–32

    Article  CAS  PubMed  Google Scholar 

  • Leung CK, Cheng ACK, Chong KKL et al (2007) Optic disc measurements in myopia with optical coherence tomography and confocal scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci 48(7):3178–3183

    Article  PubMed  Google Scholar 

  • Li KY, Roorda A (2007) Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A Opt Image Sci Vis 24(5):1358–1363

    Article  PubMed  Google Scholar 

  • Makous W, Carroll J, Wolfing JI et al (2006) Retinal microscotomas revealed with adaptive-optics microflashes. Invest Ophthalmol Vis Sci 47(9):4160–4167

    Article  PubMed  Google Scholar 

  • Nathans J, Piantanida TP, Eddy RL et al (1986) Molecular genetics of inherited variation in human color vision. Science 232:203–210

    Article  CAS  PubMed  Google Scholar 

  • Neitz M, Carroll J, Renner A et al (2004) Variety of genotypes in males diagnosed as dichromatic on a conventional clinical anomaloscope. Vis Neurosci 21:205–216

    Article  PubMed  Google Scholar 

  • Rha J, Jonnal RS, Thorn KE et al (2006) Adaptive optics flood-illumination camera for high speed retinal imaging. Opt Express 14(10):4552–4569

    Article  PubMed  Google Scholar 

  • Thévenaz P, Ruttimann UE, Unser M (1998) A pyramid approach to subpixel registration based on intensity. IEEE Trans Image Process 7(1):27–41

    Article  PubMed  Google Scholar 

  • Ueyama H, Li Y-H, Fu G-L et al (2003) An A-71C substitution in a green gene at the second position in the red/green visual-pigment gene array is associated with deutan color-vision deficiency. Proc Natl Acad Sci USA 100(6):3357–3362

    Article  CAS  PubMed  Google Scholar 

  • Z136 ASC (2007) American national standard for safe use of lasers. Orlando.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Alf Dubra for technical assistance with the adaptive optics control software & Dr. Tom Connor for helpful discussion. This study was supported by NIH Grants EY017607, EY001931, & EY014537, Fight for Sight, The E. Matilda Ziegler Foundation for the Blind, The Karl Kirchgessner Foundation, the RD & Linda Peters Foundation, the Gene & Ruth Posner Foundation, and an unrestricted departmental grant from Research to Prevent Blindness. JC is the recipient of a Career Development Award from Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rha, J. et al. (2010). Spectral Domain Optical Coherence Tomography and Adaptive Optics: Imaging Photoreceptor Layer Morphology to Interpret Preclinical Phenotypes. In: Anderson, R., Hollyfield, J., LaVail, M. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 664. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1399-9_35

Download citation

Publish with us

Policies and ethics