Skip to main content

Motor-Skill Learning in a Novel Running-Wheel Paradigm: Long-Term Memory Consolidated by D1 Receptors in the Striatum

  • Conference paper
  • First Online:
The Basal Ganglia IX

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 58))

  • 1010 Accesses

Abstract

The sensorimotor striatum mediates procedural learning. Our previous studies revealed molecular changes in the sensorimotor striatum associated with motor-skill learning in a running-wheel task. In the present series of studies, we developed a novel test to measure the motor skill learned during running-wheel training and investigated mechanisms of wheel-skill learning in the striatum. Our results show that even a short wheel training (two daily sessions) produces robust long-term memory that lasts for months. Studies using systemic and intrastriatal D1 dopamine receptor antagonism in conjunction with cocaine treatment indicate that the acquisition of this wheel skill is dependent on optimal D1 receptor signaling in the striatum. Moreover, these studies demonstrate that striatal D1 receptors are critical for the formation of late, but not early, long-term skill memory. Further studies show that striatal processing after the training mediates consolidation of this long-term skill memory, as this memory formation was disrupted by posttrial drug infusions into the striatum. Interestingly, pretrial administration of cocaine prevented this posttrial interference, suggesting that cocaine stabilizes processes of memory formation, possibly by enhancing learning-related molecular changes. Together, these findings demonstrate that this running-wheel paradigm is an efficient model to investigate mechanisms of procedural learning and memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akita H, Ogata M, Jitsuki S, Ogura T, Oh-Nishi A, Hoka S and Saji M (2006) Nigral injection of antisense oligonucleotides to synaptotagmin I using HVJ-liposome vectors causes disruption of dopamine release in the striatum and impaired skill learning. Brain Res 1095: 178–189.

    Article  CAS  PubMed  Google Scholar 

  • Bailey CH and Kandel ER (1993) Structural changes accompanying memory storage. Annu Rev Physiol 55: 397–426.

    Article  CAS  PubMed  Google Scholar 

  • Berke JD and Hyman SE (2000) Addiction, dopamine, and the molecular mechanisms of memory. Neuron 25: 515–532.

    Article  CAS  PubMed  Google Scholar 

  • Brashers-Krug T, Shadmehr R and Bizzi E (1996) Consolidation in human motor memory. Nature 382: 252–255.

    Article  CAS  PubMed  Google Scholar 

  • Costa RM, Cohen D and Nicolelis MA (2004) Differential corticostriatal plasticity during fast and slow motor skill learning in mice. Curr Biol 14: 1124–1134.

    Article  CAS  PubMed  Google Scholar 

  • Dang MT, Yokoi F, Yin HH, Lovinger DM, Wang Y and Li Y (2006) Disrupted motor learning and long-term synaptic plasticity in mice lacking NMDAR1 in the striatum. Proc Natl Acad Sci USA 103: 15254–15259.

    Article  CAS  PubMed  Google Scholar 

  • Davis S, Bozon B and Laroche S (2003) How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 142: 17–30.

    Article  CAS  PubMed  Google Scholar 

  • Drago J, Gerfen CR, Westphal H and Steiner H (1996) D1 dopamine receptor-deficient mouse: Cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 74: 813–823.

    Article  CAS  PubMed  Google Scholar 

  • Everitt BJ, Dickinson A and Robbins TW (2001) The neuropsychological basis of addictive behaviour. Brain Res Rev 36: 129–138.

    Article  CAS  PubMed  Google Scholar 

  • Eyny YS and Horvitz JC (2003) Opposing roles of D1 and D2 receptors in appetitive conditioning. J Neurosci 23: 1584–1587.

    CAS  PubMed  Google Scholar 

  • Featherstone RE and McDonald RJ (2005) Lesions of the dorsolateral striatum impair the acquisition of a simplified stimulus-response dependent conditional discrimination task. Neuroscience 136: 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM (1995) Building action repertoires: Memory and learning functions of the basal ganglia. Curr Opin Neurobiol 5: 733–741.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM, Moratalla R and Robertson HA (1990) Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum. Proc Natl Acad Sci USA 87: 6912–6916.

    Article  CAS  PubMed  Google Scholar 

  • Hale MW and Crowe SF (2003) Facilitation and disruption of memory for the passive avoidance task in the day-old chick using dopamine D1 receptor compounds. Behav Pharmacol 14: 525–532.

    Article  CAS  PubMed  Google Scholar 

  • Harlan RE and Garcia MM (1998) Drugs of abuse and immediate-early genes in the forebrain. Mol Neurobiol 16: 221–267.

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo I, Bevilaqua LR, Rossato JI, Bonini JS, Medina JH and Cammarota M (2006) Different molecular cascades in different sites of the brain control memory consolidation. Trends Neurosci 29: 496–505.

    Article  CAS  PubMed  Google Scholar 

  • Kelley AE (2004) Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron 44: 161–179.

    Article  CAS  PubMed  Google Scholar 

  • Knowlton BJ, Mangels JA and Squire LR (1996) A neostriatal habit learning system in humans. Science 273: 1399–1402.

    Article  CAS  PubMed  Google Scholar 

  • Krakauer JW and Shadmehr R (2006) Consolidation of motor memory. Trends Neurosci 29: 58–64.

    Article  CAS  PubMed  Google Scholar 

  • Luft AR, Buitrago MM, Ringer T, Dichgans J and Schulz JB (2004) Motor skill learning depends on protein synthesis in motor cortex after training. J Neurosci 24: 6515–6520.

    Article  CAS  PubMed  Google Scholar 

  • Moratalla R, Xu M, Tonegawa S and Graybiel AM (1996) Cellular responses to psychomotor stimulant and neuroleptic drugs are abnormal in mice lacking the D1 dopamine receptor. Proc Natl Acad Sci USA 93: 14928–14933.

    Article  CAS  PubMed  Google Scholar 

  • Moser MB (1999) Making more synapses: A way to store information? Cell Mol Life Sci 55: 593–600.

    Article  CAS  PubMed  Google Scholar 

  • Nestler EJ (2001) Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Ogura T, Ogata M, Akita H, Jitsuki S, Akiba L, Noda K, Hoka S and Saji M (2005) Impaired acquisition of skilled behavior in rotarod task by moderate depletion of striatal dopamine in a pre-symptomatic stage model of Parkinson’s disease. Neurosci Res 51: 299–308.

    Article  PubMed  Google Scholar 

  • Packard MG and Knowlton BJ (2002) Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25: 563–593.

    Article  CAS  PubMed  Google Scholar 

  • Packard MG and McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: Further evidence for multiple memory systems. Behav Neurosci 106: 439–446.

    Article  CAS  PubMed  Google Scholar 

  • Packard MG and White NM (1991) Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behav Neurosci 105: 295–306.

    Article  CAS  PubMed  Google Scholar 

  • Packard MG, Cahill L and McGaugh JL (1994) Amygdala modulation of hippocampal-dependent and caudate nucleus-dependent memory processes. Proc Natl Acad Sci USA 91: 8477–8481.

    Article  CAS  PubMed  Google Scholar 

  • Robertson EM, Pascual-Leone A and Miall RC (2004) Current concepts in procedural consolidation. Nat Rev Neurosci 5: 576–582.

    Article  CAS  PubMed  Google Scholar 

  • Sherwin CM (1998) Voluntary wheel running: A review and novel interpretation. Anim Behav 56: 11–27.

    Article  PubMed  Google Scholar 

  • Squire LR (1987) Memory and Brain. Oxford: Oxford University Press.

    Google Scholar 

  • Steiner H and Gerfen CR (1995) Dynorphin opioid inhibition of cocaine-induced, D1 dopamine receptor-mediated immediate-early gene expression in the striatum. J Comp Neurol 353: 200–212.

    Article  CAS  PubMed  Google Scholar 

  • Steiner H and Gerfen CR (1998) Role of dynorphin and enkephalin in the regulation of striatal output pathways and behavior. Exp Brain Res 123: 60–76.

    Article  CAS  PubMed  Google Scholar 

  • Stork O and Welzl H (1999) Memory formation and the regulation of gene expression. Cell Mol Life Sci 55: 575–592.

    Article  CAS  PubMed  Google Scholar 

  • Swanson CJ, Baker DA, Carson D, Worley PF and Kalivas PW (2001) Repeated cocaine administration attenuates group I metabotropic glutamate receptor-mediated glutamate release and behavioral activation: A potential role for Homer. J Neurosci 21: 9043–9052.

    CAS  PubMed  Google Scholar 

  • Thomas U (2002) Modulation of synaptic signalling complexes by Homer proteins. J Neurochem 81: 407–413.

    Article  CAS  PubMed  Google Scholar 

  • White NM (1996) Addictive drugs as reinforcers: Multiple partial actions on memory systems. Addiction 91: 921–949.

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I and Steiner H (2005) Motor learning-related gene regulation in the striatum: Effects of cocaine. In: The Basal Ganglia VIII (Bolam JP, Ingham CA, Magill PJ, eds), pp 197–207. New York: Plenum Press.

    Chapter  Google Scholar 

  • Willuhn I and Steiner H (2006) Motor-skill learning-associated gene regulation in the striatum: Effects of cocaine. Neuropsychopharmacology 31: 2669–2682.

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I and Steiner H (2008) Motor-skill learning in a novel running-wheel task is dependent on D1 dopamine receptors in the striatum. Neuroscience 153: 249–258.

    Article  CAS  PubMed  Google Scholar 

  • Willuhn I and Steiner H (2009) Skill-memory consolidation in the striatum: Critical for late but not early long-term memory and stabilized by cocaine. Behav Brain Res 199: 103–107.

    Article  PubMed  Google Scholar 

  • Willuhn I, Sun W and Steiner H (2003) Topography of cocaine-induced gene regulation in the rat striatum: Relationship to cortical inputs and role of behavioural context. Eur J Neurosci 17: 1053–1066.

    Article  PubMed  Google Scholar 

  • Xiao B, Tu JC and Worley PF (2000) Homer: A link between neural activity and glutamate receptor function. Curr Opin Neurobiol 10: 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Yano M and Steiner H (2005) Methylphenidate (Ritalin) induces Homer 1a and zif 268 expression in specific corticostriatal circuits. Neuroscience 132: 855–865.

    Article  CAS  PubMed  Google Scholar 

  • Yano M and Steiner H (2007) Methylphenidate and cocaine: The same effects on gene regulation? Trends Pharmacol Sci 28: 588–596.

    Article  CAS  PubMed  Google Scholar 

  • Yin HH, Knowlton BJ and Balleine BW (2004) Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19: 181–189.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by USPHS grant DA011261. We would like to thank Joel Beverley for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this paper

Cite this paper

Willuhn, I., Steiner, H. (2009). Motor-Skill Learning in a Novel Running-Wheel Paradigm: Long-Term Memory Consolidated by D1 Receptors in the Striatum. In: Groenewegen, H., Voorn, P., Berendse, H., Mulder, A., Cools, A. (eds) The Basal Ganglia IX. Advances in Behavioral Biology, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0340-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0340-2_20

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-0339-6

  • Online ISBN: 978-1-4419-0340-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics