Skip to main content

Non-Gaussian Properties of Shallow Water Waves in Crossing Seas

  • Chapter
Book cover Extreme Ocean Waves

Abstract

The Kadomtsev–Petviashvili equation, an extension of the Korteweg–de Vries equation in two horizontal dimensions, is here used to study the statistical properties of random shallow water waves in constant depth for crossing sea states. Numerical simulations indicate that the interaction of two crossing wave trains generates steep and high amplitude peaks, thus enhancing the deviation of the surface elevation from the Gaussian statistics. The analysis of the skewness and the kurtosis shows that the statistical properties depend on the angle between the two wave trains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Battjes JA (1974) Surf similarity. In: Proceedings of the 14th international conference on coastal engineering, Copenhagen, Denmark

    Google Scholar 

  2. Bitner-Gregersen E, Eknes M (2001) Ship accidents due to bad weather. Technical Report 2001-1330, Det Norske Veritas

    Google Scholar 

  3. Demirbilek Z, Vincent L (2002) Water wave mechanics. In: Demirbilek Z, Vincent L (eds) Coastal engineering manual, Part II. Hydrodynamics, chap. II-1, Engineer manual 1110-2-1100. US Army Corps of Engineers, Washington, DC

    Google Scholar 

  4. Donelan M, Magnusson AK (2005) The role of meteorological focusing in generating rogue wave conditions. In: Proceedings of the 14th Aha Huliko a Hawaiian winter workshop, University of Hawaii at Manoa, USA, 24–28 January 2005

    Google Scholar 

  5. Fornberg B, Whitham GB (1978) A numerical and theoretical study of certain nonlinear wave phenomena. Philos Trans R Soc Lond Ser A 289:373–404

    Article  Google Scholar 

  6. Forristall GZ (2000) Wave crests distributions: Observations and second-order theory. J Phys Ocean 30:1931–1943

    Article  Google Scholar 

  7. Goda Y (2000) Random seas and design on marine structures. Advanced Series on Ocean engineering, vol. 15. World Scientific, Singapore

    Google Scholar 

  8. Greenslade DJM (2001) A wave modelling study of the 1998 sydney to hobart yacht race. Aust Met Mag 50:53–63

    Google Scholar 

  9. Hauser D, Kahma KK, Krogstad HE, Lehner S, Monbaliu J, Wyatt LW (eds) (2005) Measuring and analysing the directional spectrum of ocean waves. Cost Office, Brussels

    Google Scholar 

  10. Herbers THC, Orzech M, Elgar S, Guza RT (2007) Shoaling transformation of wave frequency-directional spectra. J Geophys Res 108(C1):doi:10.1029/2001JC001304

    Google Scholar 

  11. Janssen TT, Herbers THC, Battjes JA (2006) Generalized evolution equations for nonlinear surface gravity waves over two-dimensional topography. J Fluid Mech 552:393–418

    Article  Google Scholar 

  12. Johnson RS (1997) A modern introduction to the mathematical theory of water waves. Cambridge University, Cambridge

    Google Scholar 

  13. Kadomtsev BB, Petviashvili VI (1970) On the stability of solitary waves in weakly dispersive media. Sov Phys Doklady 15:539–541

    Google Scholar 

  14. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann H, Janssen PAEM (1994) Dynamics and modeling of ocean waves. Cambridge University, Cambridge

    Google Scholar 

  15. Lehner S, Günther H, Rosenthal W (2005) Extreme wave observations from radar data sets. In: Ocean waves measurements and analysis, Fifth international symposium WAVES 2005, Madrid, Spain, 3–7 July 2005, paper 69

    Google Scholar 

  16. Longuet-Higgins MS (1952) On the statistical distribution of the heights of sea waves. J Mar Res 11:1245–1266

    Google Scholar 

  17. Miles JW (1977a) Diffraction of solitary waves. Z Ang Math 28:889–902

    Article  Google Scholar 

  18. Miles JW (1977b) Note on solitary wave on a slowly varying channel. J Fluid Mech 80:149–152

    Article  Google Scholar 

  19. Onorato M, Osborne AR, Serio M (2006) Modulation instability in crossing sea states: A possible mechanism for the formation of freak waves. Phys Rev Lett 96:014503

    Article  Google Scholar 

  20. Osborne AR, Petti M (1994) Laboratory-generated, shallow-water surface waves: analysis using the periodic, inverse scattering transform. Phys Fluids 6(5):1727–1744

    Article  Google Scholar 

  21. Pelinovsky E, Sergeeva A (2006) Numerical modeling of the kdv random wave field. Eur J Mech B Fluids 25:425–434

    Article  Google Scholar 

  22. Peterson P, Soomere T, Engelbrecht J, van Groesen E (2003) Soliton interaction as a possible model for extreme waves in shallow water. Nonlinear Proc Geophys 10:503–510

    Article  Google Scholar 

  23. Segur H, Finkel A (1985) An analytical model of periodic waves in shallow water. Stud Appl Math 73:183–220

    Google Scholar 

  24. Shukla PK, Kaurakis I, Eliasson B, Marklund M, Stenflo L (2006) Instability and evolution of nonlinearly interacting water waves. Phys Rev Lett 97:094501

    Article  Google Scholar 

  25. Soomere T, Engelbrecht J (2005) Extreme elevation and slopes of interacting solitons in shallow water. Wave Motion 41:179–192

    Article  Google Scholar 

  26. Soomere T, Engelbrecht J (2006) Weakly two-dimensional interaction of solitons in shallow water. Eur J Mech B Fluids 25:636–648

    Article  Google Scholar 

  27. Tanaka M (2001) A method of studying nonlinear random field of surface gravity waves by direct numerical simulations. Fluid Dyn Res 28:41–60

    Article  Google Scholar 

  28. Tayfun AM (1981) Distribution of crest-to-trough wave heights. J Waterw Port C Ocean Eng 107(3):149–158

    Google Scholar 

  29. Tayfun MA (1980) Narrow-band nonlinear sea waves. J Geophys Res 85(C3):1548–1552

    Article  Google Scholar 

  30. Toffoli A, Lefèvre JM, Bitner-Gregersen E, Monbaliu J (2006a) Towards the identification of warning criteria: Analysis of a ship accident database. Appl Ocean Res 27:281–291

    Article  Google Scholar 

  31. Toffoli A, Onorato M, Monbaliu J (2006b) Wave statistics in unimodal and bimodal seas from a second-order model. Eur J Mech B Fluids 25:649–661

    Article  Google Scholar 

  32. Ursell F (1953) The long wave paradox in the theory of gravity waves. Proc Camb Philos Soc 49:685–694

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Toffoli, A., Onorato, M., Osborne, A.R., Monbaliu, J. (2008). Non-Gaussian Properties of Shallow Water Waves in Crossing Seas. In: Pelinovsky, E., Kharif, C. (eds) Extreme Ocean Waves. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8314-3_3

Download citation

Publish with us

Policies and ethics