Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 615))

A human tumor cell's ability to avoid the normal regulatory mechanisms of cell growth, division, and death are the hallmarks of transformation and cancer. Numerous novel therapeutic agents currently in preclinical or clinical evaluation aim to revive the normal regulation or evade these regulatory defects and induce growth arrest and cell death. One of the cell death pathways that has garnered significant interest, as a potential target for therapeutic intervention, is the programmed cell death pathway regulated by the tumor necrosis factor-related apoptosis-inducing ligand receptors (TRAIL-RS). Receptor agonist molecules including forms of the native ligand and monoclonal antibodies are being developed and tested as therapeutics in the treatment of human cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. M. and Cory, S. (2002). Apoptosomes: engines for caspase activation. Curr Opin Cell Biol 14, 715–720.

    Article  PubMed  CAS  Google Scholar 

  • Adida, C., Haioun, C., Gaulard, P., Lepage, E., Morel, P., Briere, J., Dombret, H., Reyes, F., Diebold, J., Gisselbrecht, C., et al. (2000). Prognostic significance of survivin expression in diffuse large B-cell lymphomas. Blood 96, 1921–1925.

    PubMed  CAS  Google Scholar 

  • Alderson, R. F., Birse, C. E., Connolly, K., Humphreys, R. C., Choi, G. H., Fox, N. L., Gilles Gallant, Ina Han, Ron Johnson, et al. (2003). TRAIL-R2 mAb, a human agonistic monoclonal antibody to tumor necrosis factor-related apoptosis inducing ligand receptor 2, induces apoptosis in human tumor cells. Proceedings of 94th AACR Annual Meeting 44, 963.

    Google Scholar 

  • Amantana, A., London, C. A., Iversen, P. L., and Devi, G. R. (2004). X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 3, 699–707.

    PubMed  CAS  Google Scholar 

  • Arai, T., Akiyama, Y., Okabe, S., Saito, K., Iwai, T., and Yuasa, Y. (1998). Genomic organization and mutation analyses of the DR5/TRAIL receptor 2 gene in colorectal carcinomas. Cancer Lett 133, 197–204.

    Article  PubMed  CAS  Google Scholar 

  • Arts, H. J., de Jong, S., Hollema, H., ten Hoor, K., van der Zee, A. G., and de Vries, E. G. (2004). Chemotherapy induces death receptor 5 in epithelial ovarian carcinoma. Gynecol Oncol 92, 794–800.

    Google Scholar 

  • Asakuma, J., Sumitomo, M., Asano, T., and Hayakawa, M. (2003). Selective Akt inactivation and tumor necrosis actor-related apoptosis-inducing ligand sensitization of renal cancer cells by low concentrations of paclitaxel. Cancer Res 63, 1365–1370.

    PubMed  CAS  Google Scholar 

  • Ashkenazi, A. (2002). Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Cancer 2, 420–430.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi, A. and Dixit, V. M. (1999). Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Ashkenazi, A., Pai, R. C., Fong, S., Leung, S., Lawrence, D. A., Marsters, S. A., Blackie, C., Chang, L., McMurtrey, A. E., Hebert, A., et al. (1999). Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest 104, 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Ashley, D. M., Riffkin, C. D., Muscat, A. M., Knight, M. J., Kaye, A. H., Novak, U., and Hawkins, C. J. (2005). Caspase-8 is absent or low in many ex vivo gliomas. Cancer 104, 1487–1496.

    Article  PubMed  CAS  Google Scholar 

  • Atkins, G. J., Bouralexis, S., Evdokiou, A., Hay, S., Labrinidis, A., Zannettino, A. C., Haynes, D. R., and Findlay, D. M. (2002). Human osteoblasts are resistant to Apo2L/TRAIL-mediated apoptosis. Bone 31, 448–456.

    Article  PubMed  CAS  Google Scholar 

  • Belka, C., Schmid, B., Marini, P., Durand, E., Rudner, J., Faltin, H., Bamberg, M., Schulze-Osthoff, K., and Budach, W. (2001). Sensitization of resistant lymphoma cells to irradiation-induced apoptosis by the death ligand TRAIL. Oncogene 20, 2190–2196.

    Article  PubMed  CAS  Google Scholar 

  • Bergeron, S., Beauchemin, M., and Bertrand, R. (2004). Camptothecin- and etoposide-induced apoptosis in human leukemia cells is independent of cell death receptor-3 and -4 aggregation but accelerates tumor necrosis factor-related apoptosis-inducing ligand-mediated cell death. Mol Cancer Ther 3, 1659–1669.

    PubMed  CAS  Google Scholar 

  • Boatright, K. M. and Salvesen, G. S. (2003). Mechanisms of caspase activation. Curr Opin Cell Biol 15, 725–731.

    Article  PubMed  CAS  Google Scholar 

  • Boatright, K. M., Renatus, M., Scott, F. L., Sperandio, S., Shin, H., Pedersen, I. M., Ricci, J. E., Edris, W. A., Sutherlin, D. P., Green, D. R., and Salvesen, G. S. (2003). A unified model for apical caspase activation. Mol Cell 11, 529–541.

    Article  PubMed  CAS  Google Scholar 

  • Bockbrader, K. M., Tan, M., and Sun, Y. (2005). A small molecule Smac-mimic compound induces apoptosis and sensitizes TRAIL- and etoposide-induced apoptosis in breast cancer cells. Oncogene 24, 7381–7388.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J., and Tschopp, J. (2000a). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat Cell Biol 2, 241–243.

    Article  PubMed  CAS  Google Scholar 

  • Bodmer, J. L., Meier, P., Tschopp, J., and Schneider, P. (2000b). Cysteine 230 is essential for the structure and activity of the cytotoxic ligand TRAIL. J Biol Chem 275, 20632–20637.

    Article  PubMed  CAS  Google Scholar 

  • Bortul, R., Tazzari, P. L., Cappellini, A., Tabellini, G., Billi, A. M., Bareggi, R., Manzoli, L., Cocco, L., and Martelli, A. M. (2003). Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-kappaB activation and cFLIP(L) up-regulation. Leukemia 17, 379–389.

    Article  PubMed  CAS  Google Scholar 

  • Bouralexis, S., Findlay, D. M., Atkins, G. J., Labrinidis, A., Hay, S., and Evdokiou, A. (2003). Progressive resistance of BTK-143 osteosarcoma cells to Apo2L/TRAIL-induced apoptosis is mediated by acquisition of DcR2/TRAIL-R4 expression: resensitisation with chemotherapy. Br J Cancer 89, 206–214.

    Article  PubMed  CAS  Google Scholar 

  • Bouralexis, S., Clayer, M., Atkins, G. J., Labrinidis, A., Hay, S., Graves, S., Findlay, D. M., and Evdokiou, A. (2004). Sensitivity of fresh isolates of soft tissue sarcoma, osteosarcoma and giant cell tumour cells to Apo2L/TRAIL and doxorubicin. Int J Oncol 24, 1263–1270.

    PubMed  CAS  Google Scholar 

  • Cappellini, A., Mantovani, I., Tazzari, P. L., Grafone, T., Martinelli, G., Cocco, L., and Martelli, A. M. (2005). Application of flow cytometry to molecular medicine: detection of tumor necrosis factor-related apoptosis-inducing ligand receptors in acute myeloid leukaemia blasts. Int J Mol Med 16, 1041–1048.

    PubMed  CAS  Google Scholar 

  • Cenni, V., Maraldi, N. M., Ruggeri, A., Secchiero, P., Del Coco, R., De Pol, A., Cocco, L., and Marmiroli, S. (2004). Sensitization of multidrug resistant human ostesarcoma cells to Apo2 Ligand/TRAIL-induced apoptosis by inhibition of the Akt/PKB kinase. Int J Oncol 25, 1599–1608.

    PubMed  Google Scholar 

  • Chan, F. K., Chun, H. J., Zheng, L., Siegel, R. M., Bui, K. L., and Lenardo, M. J. (2000). A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 288, 2351–2354.

    Article  PubMed  CAS  Google Scholar 

  • Chawla-Sarkar, M., Bae, S. I., Reu, F. J., Jacobs, B. S., Lindner, D. J., and Borden, E. C. (2004). Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11, 915–923.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Thakkar, H., Tyan, F., Gim, S., Robinson, H., Lee, C., Pandey, S. K., Nwokorie, C., Onwudiwe, N., and Srivastava, R. K. (2001). Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene 20, 6073–6083.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X. P., He, S. Q., Wang, H. P., Zhao, Y. Z., and Zhang, W. G. (2003). Expression of TNF-related apoptosis-inducing Ligand receptors and antitumor tumor effects of TNF-related apoptosis-inducing Ligand in human hepatocellular carcinoma. World J Gastroenterol 9, 2433–2440.

    PubMed  CAS  Google Scholar 

  • Choi, C., Kutsch, O., Park, J., Zhou, T., Seol, D. W., and Benveniste, E. N. (2002). Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol 22, 724–736.

    Article  PubMed  CAS  Google Scholar 

  • Chuntharapai, A., Dodge, K., Grimmer, K., Schroeder, K., Marsters, S. A., Koeppen, H., Ashkenazi, A., and Kim, K. J. (2001). Isotype-dependent inhibition of tumor growth in vivo by monoclonal antibodies to death receptor 4. J Immunol 166, 4891–4898.

    PubMed  CAS  Google Scholar 

  • Ciusani, E., Croci, D., Gelati, M., Calatozzolo, C., Sciacca, F., Fumagalli, L., Balzarotti, M., Fariselli, L., Boiardi, A., and Salmaggi, A. (2005). In vitro effects of topotecan and ionizing radiation on TRAIL/Apo2L-mediated apoptosis in malignant glioma. J Neurooncol 71, 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Clancy, L., Mruk, K., Archer, K., Woelfel, M., Mongkolsapaya, J., Screaton, G., Lenardo, M. J., and Chan, F. K. (2005). Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci USA 102, 18099–18104.

    Article  PubMed  CAS  Google Scholar 

  • Clayer, M., Bouralexis, S., Evdokiou, A., Hay, S., Atkins, G. J., and Findlay, D. M. (2001). Enhanced apoptosis of soft tissue sarcoma cells with chemotherapy: a potential new approach using TRAIL. J Orthop Surg (Hong Kong) 9, 19–22.

    Google Scholar 

  • Clodi, K., Wimmer, D., Li, Y., Goodwin, R., Jaeger, U., Mann, G., Gadner, H., and Younes, A. (2000). Expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukaemia cells. Br J Haematol 111, 580–586.

    Article  PubMed  CAS  Google Scholar 

  • Cremesti, A., Paris, F., Grassme, H., Holler, N., Tschopp, J., Fuks, Z., Gulbins, E., and Kolesnick, R. (2001). Ceramide enables fas to cap and kill. J Biol Chem 276, 23954–23961.

    Article  PubMed  CAS  Google Scholar 

  • Cuello, M., Ettenberg, S. A., Nau, M. M., and Lipkowitz, S. (2001). Synergistic induction of apoptosis by the combination of trail and chemotherapy in chemoresistant ovarian cancer cells. Gynecol Oncol 81, 380–390.

    Article  PubMed  CAS  Google Scholar 

  • Daniels, R. A., Turley, H., Kimberley, F. C., Liu, X. S., Mongkolsapaya, J., Ch’En, P., Xu, X. N., Jin, B. Q., Pezzella, F., and Screaton, G. R. (2005). Expression of TRAIL and TRAIL receptors in normal and malignant tissues. Cell Res 15, 430–438.

    Article  PubMed  CAS  Google Scholar 

  • Delmas, D., Rebe, C., Micheau, O., Athias, A., Gambert, P., Grazide, S., Laurent, G., Latruffe, N., and Solary, E. (2004). Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene 23, 8979–8986.

    Article  PubMed  CAS  Google Scholar 

  • Deng, Y., Lin, Y., and Wu, X. (2002). TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev 16, 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Deocampo, N. D., Huang, H., and Tindall, D. J. (2003). The role of PTEN in the progression and survival of prostate cancer. Minerva Endocrinol 28, 145–153.

    PubMed  CAS  Google Scholar 

  • Dierlamm, J., Baens, M., Wlodarska, I., Stefanova-Ouzounova, M., Hernandez, J. M., Hossfeld, D. K., De Wolf-Peeters, C., Hagemeijer, A., Van den Berghe, H., and Marynen, P. (1999). The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609.

    PubMed  CAS  Google Scholar 

  • Dobson, C., Edwards, B., Main, S., Minter, R., and Williams, L. (2002). Generation of human therapeutic anti-TRAIL-R1 agonistic antibodies by phage display. American Association for Cancer Research 93rd Annual Meeting, Abstract 2869.

    Google Scholar 

  • Dole, M. G., Jasty, R., Cooper, M. J., Thompson, C. B., Nunez, G., and Castle, V. P. (1995). Bcl-xL is expressed in neuroblastoma cells and modulates chemotherapy-induced apoptosis. Cancer Res 55, 2576–2582.

    PubMed  CAS  Google Scholar 

  • Dorr, J., Bechmann, I., Waiczies, S., Aktas, O., Walczak, H., Krammer, P. H., Nitsch, R., and Zipp, F. (2002). Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain. J Neurosci 22, RC209.

    Google Scholar 

  • El-Zawahry, A., McKillop, J., and Voelkel-Johnson, C. (2005). Doxorubicin increases the effectiveness of Apo2L/TRAIL for tumor growth inhibition of prostate cancer xenografts. BMC Cancer 5, 2.

    Article  PubMed  CAS  Google Scholar 

  • Evdokiou, A., Bouralexis, S., Atkins, G. J., Chai, F., Hay, S., Clayer, M., and Findlay, D. M. (2002). Chemotherapeutic agents sensitize osteogenic sarcoma cells, but not normal human bone cells, to Apo2L/TRAIL-induced apoptosis. Int J Cancer 99, 491–504.

    Article  PubMed  CAS  Google Scholar 

  • Fesik, S. W. (2005). Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5, 876–885.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, M. J., Virmani, A. K., Wu, L., Aplenc, R., Harper, J. C., Powell, S. M., Rebbeck, T. R., Sidransky, D., Gazdar, A. F., and El-Deiry, W. S. (2001). Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin Cancer Res 7, 1688–1697.

    PubMed  CAS  Google Scholar 

  • Foreman, K. E., Wrone-Smith, T., Boise, L. H., Thompson, C. B., Polverini, P. J., Simonian, P. L., Nunez, G., and Nickoloff, B. J. (1996). Kaposi’s sarcoma tumor cells preferentially express Bcl-xL. Am J Pathol 149, 795–803.

    PubMed  CAS  Google Scholar 

  • Frank, S., Kohler, U., Schackert, G., and Schackert, H. K. (1999). Expression of TRAIL and its receptors in human brain tumors. Biochem Biophys Res Commun 257, 454–459.

    Article  PubMed  CAS  Google Scholar 

  • Frese, S., Brunner, T., Gugger, M., Uduehi, A., and Schmid, R. A. (2002). Enhancement of Apo2L/TRAIL (tumor necrosis factor-related apoptosis-inducing ligand)-induced apoptosis in non-small cell lung cancer cell lines by chemotherapeutic agents without correlation to the expression level of cellular protease caspase-8 inhibitory protein. J Thorac Cardiovasc Surg 123, 168–174.

    Article  PubMed  CAS  Google Scholar 

  • Fulda, S., Meyer, E., and Debatin, K. M. (2002a). Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene 21, 2283–2294.

    Article  PubMed  CAS  Google Scholar 

  • Fulda, S., Wick, W., Weller, M., and Debatin, K. M. (2002b). Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med 8, 808–815.

    PubMed  CAS  Google Scholar 

  • Galligan, L., Longley, D. B., McEwan, M., Wilson, T. R., McLaughlin, K., and Johnston, P. G. (2005). Chemotherapy and TRAIL-mediated colon cancer cell death: the roles of p53, TRAIL receptors, and c-FLIP. Mol Cancer Ther 4, 2026–2036.

    Article  PubMed  CAS  Google Scholar 

  • Ganten, T. M., Koschny, R., Haas, T. L., Sykora, J., Li-Weber, M., Herzer, K., and Walczak, H. (2005). Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42, 588–597.

    Article  PubMed  CAS  Google Scholar 

  • Georgakis, G. V., Li, Y., Humphreys, R., Andreeff, M., O’Brien, S., Younes, M., Carbone, A., Albert, V., and Younes, A. (2005). Activity of selective fully human agonistic antibodies to the TRAIL death receptors TRAIL-R1 and TRAIL-R2 in primary and cultured lymphoma cells: induction of apoptosis and enhancement of doxorubicin- and bortezomib-induced cell death. Br J Haematol 130, 501–510.

    Article  PubMed  CAS  Google Scholar 

  • Georgakis, G. V., Li, Y., Humphreys, R., Johnson, R., Andreeff, M., Fiscella, M., Pukac, L., O’Brien, S., Albert, V., and Younes, A. (2003). Activity of selective agonistic monoclonal antibodies to TRAIL death receptors R1 and R2 in primary and cultured tumor cells of hematological origin. Blood 102, 228.

    Google Scholar 

  • Gillotte, D., Poortman, C., Zhang, L., Huang, X., Fiscella, M., Humphreys, R., and Johnson, R. L., (2004). Human agonistic anti-TRAIL receptor antibodies, HGS-ETR1 and HGS-ETR2, induce apoptosis in ovarian tumor lines and their activity is enhanced by taxol and carboplatin. Proceedings of the AACR 73: 3579.

    Google Scholar 

  • Griffith, T. S., Chin, W. A., Jackson, G. C., Lynch, D. H., and Kubin, M. Z. (1998). Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161, 2833–2840.

    PubMed  CAS  Google Scholar 

  • Griffith, T. S., Wiley, S. R., Kubin, M. Z., Sedger, L. M., Maliszewski, C. R., and Fanger, N. A. (1999). Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 189, 1343–1354.

    Article  PubMed  CAS  Google Scholar 

  • Guo, F., Sigua, C., Tao, J., Bali, P., George, P., Li, Y., Wittmann, S., Moscinski, L., Atadja, P., and Bhalla, K. (2004). Cotreatment with histone deacetylase inhibitor LAQ824 enhances Apo-2L/tumor necrosis factor-related apoptosis inducing ligand-induced death inducing signaling complex activity and apoptosis of human acute leukemia cells. Cancer Res 64, 2580–2589.

    Article  PubMed  CAS  Google Scholar 

  • Hao, C., Song, J. H., Hsi, B., Lewis, J., Song, D. K., Petruk, K. C., Tyrrell, D. L., and Kneteman, N. M. (2004). TRAIL inhibits tumor growth but is nontoxic to human hepatocytes in chimeric mice. Cancer Res 64, 8502–8506.

    Article  PubMed  CAS  Google Scholar 

  • Hasel, C., Durr, S., Rau, B., Strater, J., Schmid, R. M., Walczak, H., Bachem, M. G., and Moller, P. (2003). In chronic pancreatitis, widespread emergence of TRAIL receptors in epithelia coincides with neoexpression of TRAIL by pancreatic stellate cells of early fibrotic areas. Lab Invest 83, 825–836.

    PubMed  CAS  Google Scholar 

  • He, Q., Montalbano, J., Corcoran, C., Jin, W., Huang, Y., and Sheikh, M. S. (2003). Effect of Bax deficiency on death receptor 5 and mitochondrial pathways during endoplasmic reticulum calcium pool depletion-induced apoptosis. Oncogene 22, 2674–2679.

    Article  PubMed  CAS  Google Scholar 

  • Houghton, J. A. (1999). Apoptosis and drug response. Curr Opin Oncol 11, 475–481.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, R. C., Alderson, R. F., Bayever, E., Connolly, K., Choi, G. H., Fox, N. L., Gallant, G., Grzegorzewski, K. J., Roschke, V., Salcedo, T. W., et al. (2003). TRAIL R2-mAb, a human agonistic monoclonal antibody to tumor necrosis factor-related apoptosis inducing ligand receptor 2, affects tumor growth and induces apoptosis in human tumor xenograft models in vivo. 94th AACR Annual Meeting 44, 642.

    Google Scholar 

  • Hymowitz, S. G., Christinger, H. W., Fuh, G., Ultsch, M., O’Connell, M., Kelley, R. F., Ashkenazi, A., and de Vos, A. M. (1999). Triggering cell death: the crystal structure of Apo2L/TRAIL in a complex with death receptor 5. Mol Cell 4, 563–571.

    Article  PubMed  CAS  Google Scholar 

  • Hymowitz, S. G., O’Connell, M. P., Ultsch, M. H., Hurst, A., Totpal, K., Ashkenazi, A., de Vos, A. M., and Kelley, R. F. (2000). A unique zinc-binding site revealed by a high-resolution X-ray structure of homotrimeric Apo2L/TRAIL. Biochemistry 39, 633–640.

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim, S. M., Ringel, J., Schmidt, C., Ringel, B., Muller, P., Koczan, D., Thiesen, H. J., and Lohr, M. (2001). Pancreatic adenocarcinoma cell lines show variable susceptibility to TRAIL-mediated cell death. Pancreas 23, 72–79.

    Article  PubMed  CAS  Google Scholar 

  • Ichikawa, K., Liu, W., Zhao, L., Wang, Z., Liu, D., Ohtsuka, T., Zhang, H., Mountz, J. D., Koopman, W. J., Kimberly, R. P., and Zhou, T. (2001). Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 7, 954–960.

    Article  PubMed  CAS  Google Scholar 

  • Igney, F. H. and Krammer, P. H. (2002). Death and anti-death: tumour resistance to apoptosis. Nat Rev Cancer 2, 277–288.

    Article  PubMed  CAS  Google Scholar 

  • Ionov, Y., Yamamoto, H., Krajewski, S., Reed, J. C., and Perucho, M. (2000). Mutational inactivation of the proapoptotic gene BAX confers selective advantage during tumor clonal evolution. Proc Natl Acad Sci USA 97, 10872–10877.

    Article  PubMed  CAS  Google Scholar 

  • Jazirehi, A. R., Ng, C. P., Gan, X. H., Schiller, G., and Bonavida, B. (2001). Adriamycin sensitizes the adriamycin-resistant 8226/Dox40 human multiple myeloma cells to Apo2L/tumor necrosis factor-related apoptosis-inducing ligand-mediated (TRAIL) apoptosis. Clin Cancer Res 7, 3874–3883.

    PubMed  CAS  Google Scholar 

  • Jeng, Y. M. and Hsu, H. C. (2002). Mutation of the DR5/TRAIL receptor 2 gene is infrequent in hepatocellular carcinoma. Cancer Lett 181, 205–208.

    Article  PubMed  CAS  Google Scholar 

  • Jeon, K. I., Rih, J. K., Kim, H. J., Lee, Y. J., Cho, C. H., Goldberg, I. D., Rosen, E. M., and Bae, I. (2003). Pretreatment of indole-3-carbinol augments TRAIL-induced apoptosis in a prostate cancer cell line, LNCaP. FEBS Lett 544, 246–251.

    Article  PubMed  CAS  Google Scholar 

  • Jin, T.-G., Kurakin, A., Benhaga, N., Abe, K., Mohseni, M., Sandra, F., Song, K., Kay, B. K., and Khosravi-Far, R. (2004). FADD-independent recruitment of c-FLIPL to death receptor 5. J Biol Chem 279, 55594–55601.

    Google Scholar 

  • Jo, M., Kim, T. H., Seol, D. W., Esplen, J. E., Dorko, K., Billiar, T. R., and Strom, S. C. (2000). Apoptosis induced in normal human hepatocytes by tumor necrosis factor-related apoptosis-inducing ligand. Nat Med 6, 564–567.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R. L., Huang, X., Fiscella, M., Cole, C., Pukac, L., Von Kerczek, A., Humphreys, R., Grzegorzewski, K. J., Gallant, G., and Albert, V. (2003). Human agonistic anti-TRAIL receptor antibodies, HGS-ETR1 and HGS-ETR2, induce apoptosis in diverse hematological tumor lines. Blood 102 (Abstract 3316).

    Google Scholar 

  • Johnston, B., Kabore, A. F., Strutinsky, J., Hu, X., Paul, J. T., Kropp, D. M., Kuschak, B., Begleiter, A., and Gibson, S. B. (2003). Role of the TRAIL/APO2-L death receptors in chlorambucil- and fludarabine-induced apoptosis in chronic lymphocytic leukemia. Oncogene 22, 8356–8369.

    Article  PubMed  CAS  Google Scholar 

  • Kaliberov, S., Stackhouse, M. A., Kaliberova, L., Zhou, T., and Buchsbaum, D. J. (2004). Enhanced apoptosis following treatment with TRA-8 anti-human DR5 monoclonal antibody and overexpression of exogenous Bax in human glioma cells. Gene Ther 11, 658–667.

    Article  PubMed  CAS  Google Scholar 

  • Kandasamy, K., Srinivasula, S. M., Alnemri, E. S., Thompson, C. B., Korsmeyer, S. J., Bryant, J. L., and Srivastava, R. K. (2003). Involvement of proapoptotic molecules Bax and Bak in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced mitochondrial disruption and apoptosis: differential regulation of cytochrome c and Smac/DIABLO release. Cancer Res 63, 1712–1721.

    PubMed  CAS  Google Scholar 

  • Kang, J., Bu, J., Hao, Y., and Chen, F. (2005). Subtoxic concentration of doxorubicin enhances TRAIL-induced apoptosis in human prostate cancer cell line LNCaP. Prostate Cancer Prostatic Dis 8, 274–279.

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, S. H., Karp, J. E., Svingen, P. A., Krajewski, S., Burke, P. J., Gore, S. D., and Reed, J. C. (1998). Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91, 991–1000.

    PubMed  CAS  Google Scholar 

  • Kayagaki, N., Yamaguchi, N., Nakayama, M., Kawasaki, A., Akiba, H., Okumura, K., and Yagita, H. (1999a). Involvement of TNF-related apoptosis-inducing ligand in human CD4 + T cell-mediated cytotoxicity. J Immunol 162, 2639–2647.

    PubMed  CAS  Google Scholar 

  • Kayagaki, N., Yamaguchi, N., Nakayama, M., Takeda, K., Akiba, H., Tsutsui, H., Okamura, H., Nakanishi, K., Okumura, K., and Yagita, H. (1999b). Expression and function of TNF-related apoptosis-inducing ligand on murine activated NK cells. J Immunol 163, 1906–1913.

    Google Scholar 

  • Keane, M. M., Ettenberg, S. A., Nau, M. M., Russell, E. K., and Lipkowitz, S. (1999). Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Res 59, 734–741.

    PubMed  CAS  Google Scholar 

  • Kelley, S. K., Harris, L. A., Xie, D., Deforge, L., Totpal, K., Bussiere, J., and Fox, J. A. (2001). Preclinical studies to predict the disposition of Apo2L/tumor necrosis factor-related apoptosis-inducing ligand in humans: characterization of in vivo efficacy, pharmacokinetics, and safety. J Pharmacol Exp Ther 299, 31–38.

    PubMed  CAS  Google Scholar 

  • Kelly, M. M., Hoel, B. D., and Voelkel-Johnson, C. (2002). Doxorubicin pretreatment sensitizes prostate cancer cell lines to TRAIL induced apoptosis which correlates with the loss of c-FLIP expression. Cancer Biol Ther 1, 520–527.

    PubMed  Google Scholar 

  • Kelly, W. K. and Marks, P. A. (2005). Drug insight: histone deacetylase inhibitors–development of the new targeted anticancer agent suberoylanilide hydroxamic acid. Nat Clin Pract Oncol 2, 150–157.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, W. K., O’Connor, O. A., Krug, L. M., Chiao, J. H., Heaney, M., Curley, T., MacGregore-Cortelli, B., Tong, W., Secrist, J. P., Schwartz, L., et al. (2005). Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer. J Clin Oncol 23, 3923–3931.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E. H., Kim, S. U., Shin, D. Y., and Choi, K. S. (2004). Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP. Oncogene 23, 446–456.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E. H., Kim, S. U., and Choi, K. S. (2005). Rottlerin sensitizes glioma cells to TRAIL-induced apoptosis by inhibition of Cdc2 and the subsequent downregulation of survivin and XIAP. Oncogene 24, 838–849.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K., Fisher, M. J., Xu, S. Q., and el-Deiry, W. S. (2000). Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res 6, 335–346.

    PubMed  CAS  Google Scholar 

  • Kischkel, F. C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, K. J., and Ashkenazi, A. (2000). Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611–620.

    Article  PubMed  CAS  Google Scholar 

  • Kondo, K., Yamasaki, S., Sugie, T., Teratani, N., Kan, T., Imamura, M., and Shimada, Y. (2006). Cisplatin-dependent upregulation of death receptors 4 and 5 augments induction of apoptosis by TNF-related apoptosis-inducing ligand against esophageal squamous cell carcinoma. Int J Cancer 118, 230–242.

    Article  PubMed  CAS  Google Scholar 

  • Koornstra, J. J., Kleibeuker, J. H., van Geelen, C. M., Rijcken, F. E., Hollema, H., de Vries, E. G., and de Jong, S. (2003). Expression of TRAIL (TNF-related apoptosis-inducing ligand) and its receptors in normal colonic mucosa, adenomas, and carcinomas. J Pathol 200, 327–335.

    Article  PubMed  CAS  Google Scholar 

  • Kuang, A. A., Diehl, G. E., Zhang, J., and Winoto, A. (2000). FADD is required for DR4- and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem 275, 25065–25068.

    Article  PubMed  CAS  Google Scholar 

  • Kuraoka, K., Matsumura, S., Sanada, Y., Nakachi, K., Imai, K., Eguchi, H., Matsusaki, K., Oue, N., Nakayama, H., and Yasui, W. (2005). A single nucleotide polymorphism in the extracellular domain of TRAIL receptor DR4 at nucleotide 626 in gastric cancer patients in Japan. Oncol Rep 14, 465–470.

    PubMed  CAS  Google Scholar 

  • Lashinger, L. M., Zhu, K., Williams, S. A., Shrader, M., Dinney, C. P., and McConkey, D. J. (2005). Bortezomib abolishes tumor necrosis factor-related apoptosis-inducing ligand resistance via a p21-dependent mechanism in human bladder and prostate cancer cells. Cancer Res 65, 4902–4908.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D., Shahrokh, Z., Marsters, S., Achilles, K., Shih, D., Mounho, B., Hillan, K., Totpal, K., DeForge, L., Schow, P., et al. (2001). Differential hepatocyte toxicity of recombinant Apo2L/TRAIL versions. Nat Med 7, 383–385.

    Article  PubMed  CAS  Google Scholar 

  • Leaman, D. W., Chawla-Sarkar, M., Vyas, K., Reheman, M., Tamai, K., Toji, S., and Borden, E. C. (2002). Identification of X-linked inhibitor of apoptosis-associated factor-1 as an interferon-stimulated gene that augments TRAIL Apo2L-induced apoptosis. J Biol Chem 277, 28504–28511.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc, H., Lawrence, D., Varfolomeev, E., Totpal, K., Morlan, J., Schow, P., Fong, S., Schwall, R., Sinicropi, D., and Ashkenazi, A. (2002). Tumor-cell resistance to death receptor–induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med 8, 274–281.

    Article  PubMed  CAS  Google Scholar 

  • LeBlanc, H. N. and Ashkenazi, A. (2003). Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 10, 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Lee, S. H., Shin, M. S., Kim, H. S., Lee, H. K., Park, W. S., Kim, S. Y., Lee, J. H., Han, S. Y., Park, J. Y., Oh, R. R., et al. (1999). Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res 59, 5683–5686.

    PubMed  CAS  Google Scholar 

  • Leverkus, M., Neumann, M., Mengling, T., Rauch, C. T., Brocker, E. B., Krammer, P. H., and Walczak, H. (2000a). Regulation of tumor necrosis factor-related apoptosis-inducing ligand sensitivity in primary and transformed human keratinocytes. Cancer Res 60, 553–559.

    PubMed  CAS  Google Scholar 

  • Leverkus, M., Walczak, H., McLellan, A., Fries, H. W., Terbeck, G., Brocker, E. B., and Kampgen, E. (2000b). Maturation of dendritic cells leads to up-regulation of cellular FLICE-inhibitory protein and concomitant down-regulation of death ligand-mediated apoptosis. Blood 96, 2628–2631.

    PubMed  CAS  Google Scholar 

  • Li, L., Thomas, R. M., Suzuki, H., De Brabander, J. K., Wang, X., and Harran, P. G. (2004). A small molecule Smac mimic potentiates TRAIL- and TNFalpha-mediated cell death. Science 305, 1471–1474.

    Article  PubMed  CAS  Google Scholar 

  • Liu, W., Bodle, E., Chen, J. Y., Gao, M., Rosen, G. D., and Broaddus, V. C. (2001). Tumor necrosis factor-related apoptosis-inducing ligand and chemotherapy cooperate to induce apoptosis in mesothelioma cell lines. Am J Respir Cell Mol Biol 25, 111–118.

    PubMed  CAS  Google Scholar 

  • Liu, X. S., Zhu, Y., Han, W. N., Li, Y. N., Chen, L. H., Jia, W., Song, C. J., Liu, F., Yang, K., Li, Q., and Jin, B. Q. (2003). Preparation and characterization of a set of monoclonal antibodies to TRAIL and TRAIL receptors DR4, DR5, DcR1, and DcR2. Hybrid Hybridomics 22, 121–125.

    Article  PubMed  CAS  Google Scholar 

  • Locksley, R. M., Killeen, N., and Lenardo, M. J. (2001). The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501.

    Article  PubMed  CAS  Google Scholar 

  • Ludwig, D. L., Pereira, D. S., Zhu, Z., Hicklin, D. J., and Bohlen, P. (2003). Monoclonal antibody therapeutics and apoptosis. Oncogene 22, 9097–9106.

    Article  PubMed  CAS  Google Scholar 

  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490.

    Article  PubMed  CAS  Google Scholar 

  • Luschen, S., Ussat, S., Scherer, G., Kabelitz, D., and Adam-Klages, S. (2000). Sensitization to death receptor cytotoxicity by inhibition of fas-associated death domain protein (FADD)/caspase signaling. Requirement of cell cycle progression. J Biol Chem 275, 24670–24678.

    Article  PubMed  CAS  Google Scholar 

  • Marcucci, G., Stock, W., Dai, G., Klisovic, R. B., Liu, S., Klisovic, M. I., Blum, W., Kefauver, C., Sher, D. A., Green, M., et al. (2005). Phase I study of oblimersen sodium, an antisense to Bcl-2, in untreated older patients with acute myeloid leukemia: pharmacokinetics, pharmacodynamics, and clinical activity. J Clin Oncol 23, 3404–3411.

    Article  PubMed  CAS  Google Scholar 

  • Mariani, S. M. and Krammer, P. H. (1998). Surface expression of TRAIL/Apo-2 ligand in activated mouse T and B cells. Eur J Immunol 28, 1492–1498.

    Article  PubMed  CAS  Google Scholar 

  • Marks, P. A., Richon, V. M., Kelly, W. K., Chiao, J. H., and Miller, T. (2004). Histone deacetylase inhibitors: development as cancer therapy. Novartis Found Symp 259, 269–281; discussion 281–268.

    Google Scholar 

  • Marsters, S. A., Frutkin, A. D., Simpson, N. J., Fendly, B. M., and Ashkenazi, A. (1992). Identification of cysteine-rich domains of the type 1 tumor necrosis factor receptor involved in ligand binding. J Biol Chem 267, 5747–5750.

    PubMed  CAS  Google Scholar 

  • Matta, H. and Chaudhary, P. M. (2005). The proteasome inhibitor bortezomib (PS-341) inhibits growth and induces apoptosis in primary effusion lymphoma cells. Cancer Biol Ther 4, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, M. M., Sznol, M., DiVito, K. A., Camp, R. L., Rimm, D. L., and Kluger, H. M. (2005). Evaluating the expression and prognostic value of TRAIL-R1 and TRAIL-R2 in breast cancer. Clin Cancer Res 11, 5188–5194.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, E. R., III, Chui, P. C., Martelli, P. F., Dicker, D. T., and El-Deiry, W. S. (2001). Death domain mutagenesis of KILLER/DR5 reveals residues critical for apoptotic signaling. J Biol Chem 276, 14939–14945.

    Article  PubMed  CAS  Google Scholar 

  • McManus, D. C., Lefebvre, C. A., Cherton-Horvat, G., St-Jean, M., Kandimalla, E. R., Agrawal, S., Morris, S. J., Durkin, J. P., and Lacasse, E. C. (2004). Loss of XIAP protein expression by RNAi and antisense approaches sensitizes cancer cells to functionally diverse chemotherapeutics. Oncogene 23, 8105–8117.

    Article  PubMed  CAS  Google Scholar 

  • Meng, R. D., McDonald, E. R., III, Sheikh, M. S., Fornace, A. J., Jr., and El-Deiry, W. S. (2000). The TRAIL decoy receptor TRUNDD (DcR2, TRAIL-R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis. Mol Ther 1, 130–144.

    Article  PubMed  CAS  Google Scholar 

  • Miao, L., Yi, P., Wang, Y., and Wu, M. (2003). Etoposide upregulates Bax-enhancing tumour necrosis factor-related apoptosis inducing ligand-mediated apoptosis in the human hepatocellular carcinoma cell line QGY-7703. Eur J Biochem 270, 2721–2731.

    Article  PubMed  CAS  Google Scholar 

  • Miller, K., Meng, G., Liu, J., Hurst, A., Hsei, V., Wong, W. L., Ekert, R., Lawrence, D., Sherwood, S., DeForge, L., et al. (2003). Design, construction, and in vitro analyses of multivalent antibodies. J Immunol 170, 4854–4861.

    PubMed  CAS  Google Scholar 

  • Mirandola, P., Gobbi, G., Ponti, C., Sponzilli, I., Cocco, L., and Vitale, M. (2006a). PKC{epsilon} controls the protection against TRAIL in erythroid progenitors. Blood 107, 508–513.

    Article  PubMed  CAS  Google Scholar 

  • Mirandola, P., Sponzilli, I., Gobbi, G., Marmiroli, S., Rinaldi, L., Binazzi, R., Piccari, G. G., Ramazzotti, G., Gaboardi, G. C., Cocco, L., and Vitale, M. (2006b). Anticancer agents sensitize osteosarcoma cells to TNF-related apoptosis-inducing ligand downmodulating IAP family proteins. Int J Oncol 28, 127–133.

    PubMed  CAS  Google Scholar 

  • Mitsiades, N., Poulaki, V., Tseleni-Balafouta, S., Koutras, D. A., and Stamenkovic, I. (2000). Thyroid carcinoma cells are resistant to FAS-mediated apoptosis but sensitive tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 60, 4122–4129.

    PubMed  CAS  Google Scholar 

  • Mitsiades, C. S., Treon, S. P., Mitsiades, N., Shima, Y., Richardson, P., Schlossman, R., Hideshima, T., and Anderson, K. C. (2001a). TRAIL/Apo2L ligand selectively induces apoptosis and overcomes drug resistance in multiple myeloma: therapeutic applications. Blood 98, 795–804.

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades, N., Mitsiades, C. S., Poulaki, V., Anderson, K. C., and Treon, S. P. (2001b). Concepts in the use of TRAIL/Apo2L: an emerging biotherapy for myeloma and other neoplasias. Expert Opin Investig Drugs 10, 1521–1530.

    Article  PubMed  CAS  Google Scholar 

  • Mongkolsapaya, J., Grimes, J. M., Chen, N., Xu, X. N., Stuart, D. I., Jones, E. Y., and Screaton, G. R. (1999). Structure of the TRAIL-DR5 complex reveals mechanisms conferring specificity in apoptotic initiation. Nat Struct Biol 6, 1048–1053.

    Article  PubMed  CAS  Google Scholar 

  • Motoki, K., Mori, E., Matsumoto, A., Thomas, M., Tomura, T., Humphreys, R., Albert, V., Muto, M., Yoshida, H., Aoki, M., et al. (2005). Enhanced apoptosis and tumor regression induced by a direct agonist antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2. Clin Cancer Res 11, 3126–3135.

    Article  PubMed  CAS  Google Scholar 

  • Muhlenbeck, F., Haas, E., Schwenzer, R., Schubert, G., Grell, M., Smith, C., Scheurich, P., and Wajant, H. (1998). TRAIL/Apo2L activates c-Jun NH2-terminal kinase (JNK) via caspase-dependent and caspase-independent pathways. J Biol Chem 273, 33091–33098.

    Article  PubMed  CAS  Google Scholar 

  • Muhlenbeck, F., Schneider, P., Bodmer, J. L., Schwenzer, R., Hauser, A., Schubert, G., Scheurich, P., Moosmayer, D., Tschopp, J., and Wajant, H. (2000). The tumor necrosis factor-related apoptosis-inducing ligand receptors TRAIL-R1 and TRAIL-R2 have distinct cross-linking requirements for initiation of apoptosis and are non-redundant in JNK activation. J Biol Chem 275, 32208–32213.

    Article  PubMed  CAS  Google Scholar 

  • Muhlethaler-Mottet, A., Bourloud, K. B., Auderset, K., Joseph, J. M., and Gross, N. (2004). Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-complemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl-x(L) and RIP. Oncogene 23(32), 5415–5425.

    Article  PubMed  CAS  Google Scholar 

  • Mundt, B., Kuhnel, F., Zender, L., Paul, Y., Tillmann, H., Trautwein, C., Manns, M. P., and Kubicka, S. (2003). Involvement of TRAIL and its receptors in viral hepatitis. FASEB J 17, 94–96.

    PubMed  CAS  Google Scholar 

  • Muzio, M., Stockwell, B. R., Stennicke, H. R., Salvesen, G. S., and Dixit, V. M. (1998). An induced proximity model for caspase-8 activation. J Biol Chem 273, 2926–2930.

    Article  PubMed  CAS  Google Scholar 

  • Nagane, M., Levitzki, A., Gazit, A., Cavenee, W. K., and Huang, H. J. (1998). Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci USA 95, 5724–5729.

    Article  PubMed  CAS  Google Scholar 

  • Nagane, M., Pan, G., Weddle, J. J., Dixit, V. M., Cavenee, W. K., and Huang, H. J. (2000). Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo. Cancer Res 60, 847–853.

    PubMed  CAS  Google Scholar 

  • Nagane, M., Huang, H. J., and Cavenee, W. K. (2001). The potential of TRAIL for cancer chemotherapy. Apoptosis 6, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Naka, T., Sugamura, K., Hylander, B. L., Widmer, M. B., Rustum, Y. M., and Repasky, E. A. (2002). Effects of tumor necrosis factor-related apoptosis-inducing ligand alone and in combination with chemotherapeutic agents on patients’ colon tumors grown in SCID mice. Cancer Res 62, 5800–5806.

    PubMed  CAS  Google Scholar 

  • Nencioni, A., Wille, L., Dal Bello, G., Boy, D., Cirmena, G., Wesselborg, S., Belka, C., Brossart, P., Patrone, F., and Ballestrero, A. (2005). Cooperative cytotoxicity of proteasome inhibitors and tumor necrosis factor-related apoptosis-inducing ligand in chemoresistant Bcl-2-overexpressing cells. Clin Cancer Res 11, 4259–4265.

    Article  PubMed  CAS  Google Scholar 

  • Nesterov, A., Lu, X., Johnson, M., Miller, G. J., Ivashchenko, Y., and Kraft, A. S. (2001). Elevated AKT activity protects the prostate cancer cell line LNCaP from TRAIL-induced apoptosis. J Biol Chem 276, 10767–10774.

    Article  PubMed  CAS  Google Scholar 

  • Ng, C. P. and Bonavida, B. (2002). X-linked inhibitor of apoptosis (XIAP) blocks Apo2 ligand/tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis of prostate cancer cells in the presence of mitochondrial activation: sensitization by overexpression of second mitochondria-derived activator of caspase/direct IAP-binding protein with low pl (Smac/DIABLO). Mol Cancer Ther 1, 1051–1058.

    PubMed  CAS  Google Scholar 

  • Nieda, M., Nicol, A., Koezuka, Y., Kikuchi, A., Lapteva, N., Tanaka, Y., Tokunaga, K., Suzuki, K., Kayagaki, N., Yagita, H., et al. (2001). TRAIL expression by activated human CD4(+) V alpha 24NKT cells induces in vitro and in vivo apoptosis of human acute myeloid leukemia cells. Blood 97, 2067–2074.

    Article  PubMed  CAS  Google Scholar 

  • Nikrad, M., Johnson, T., Puthalalath, H., Coultas, L., Adams, J., and Kraft, A. S. (2005). The proteasome inhibitor bortezomib sensitizes cells to killing by death receptor ligand TRAIL via BH3-only proteins Bik and Bim. Mol Cancer Ther 4, 443–449.

    PubMed  CAS  Google Scholar 

  • O’Brien, S. M., Cunningham, C. C., Golenkov, A. K., Turkina, A. G., Novick, S. C., and Rai, K. R. (2005). Phase I to II multicenter study of oblimersen sodium, a Bcl-2 antisense oligonucleotide, in patients with advanced chronic lymphocytic leukemia. J Clin Oncol 23, 7697–7702.

    Article  PubMed  CAS  Google Scholar 

  • Odoux, C., Albers, A., Amoscato, A. A., Lotze, M. T., and Wong, M. K. (2002). TRAIL, FasL and a blocking anti-DR5 antibody augment paclitaxel-induced apoptosis in human non-small-cell lung cancer. Int J Cancer 97, 458–465.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka, T., Buchsbaum, D., Oliver, P., Makhija, S., Kimberly, R., and Zhou, T. (2003). Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene 22, 2034–2044.

    Article  PubMed  CAS  Google Scholar 

  • Ou, D., Wang, X., Metzger, D. L., James, R. F., Pozzilli, P., Plesner, A., Korneluk, R. G., Verchere, C. B., and Tingle, A. J. (2005). Synergistic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human pancreatic beta cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum Immunol 66, 274–284.

    Article  PubMed  CAS  Google Scholar 

  • Ozoren, N., Fisher, M. J., Kim, K., Liu, C. X., Genin, A., Shifman, Y., Dicker, D. T., Spinner, N. B., Lisitsyn, N. A., and El-Deiry, W. S. (2000). Homozygous deletion of the death receptor DR4 gene in a nasopharyngeal cancer cell line is associated with TRAIL resistance. Int. J Oncol 16, 917–925.

    Google Scholar 

  • Pai, S. I., Wu, G. S., Ozoren, N., Wu, L., Jen, J., Sidransky, D., and El-Deiry, W. S. (1998). Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res 58, 3513–3518.

    PubMed  CAS  Google Scholar 

  • Pan, G., O’Rourke, K., and Dixit, V. M. (1998). Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 273, 5841–5845.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, A., Lashinger, L., Millikan, R., Grossman, H. B., Benedict, W., Dinney, C. P., and McConkey, D. J. (2004). Role of tumor necrosis factor-related apoptosis-inducing ligand in interferon-induced apoptosis in human bladder cancer cells. Cancer Res 64, 8973–8979.

    Article  PubMed  CAS  Google Scholar 

  • Pei, Z., Chu, L., Zou, W., Zhang, Z., Qiu, S., Qi, R., Gu, J., Qian, C., and Liu, X. (2004). An oncolytic adenoviral vector of Smac increases antitumor activity of TRAIL against HCC in human cells and in mice. Hepatology 39, 1371–1381.

    Article  PubMed  CAS  Google Scholar 

  • Pitti, R. M., Marsters, S. A., Ruppert, S., Donahue, C. J., Moore, A., and Ashkenazi, A. (1996). Induction of apoptosis by Apo-2 ligand, a new member of the tumor necrosis factor cytokine family. J Biol Chem 271, 12687–12690.

    Article  PubMed  CAS  Google Scholar 

  • Poulaki, V., Mitsiades, C. S., McMullan, C., Fanourakis, G., Negri, J., Goudopoulou, A., Halikias, I. X., Voutsinas, G., Tseleni-Balafouta, S., Miller, J. W., and Mitsiades, N. (2005). Human retinoblastoma cells are resistant to apoptosis induced by death receptors: role of caspase-8 gene silencing. Invest Ophthalmol Vis Sci 46, 358–366.

    Article  PubMed  Google Scholar 

  • Pukac, L., Kanakaraj, P., Humphreys, R., Alderson, R., Bloom, M., Sung, C., Riccobene, T., Johnson, R., Fiscella, M., Mahoney, A., et al. (2005). HGS-ETR1, a fully human TRAIL-receptor 1 monoclonal antibody, induces cell death in multiple tumour types in vitro and in vivo. Br J Cancer 92, 1430–1441.

    Article  PubMed  CAS  Google Scholar 

  • Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J. C., and Perucho, M. (1997). Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275, 967–969.

    Article  PubMed  CAS  Google Scholar 

  • Reesink-Peters, N., Hougardy, B. M., van den Heuvel, F. A., Ten Hoor, K. A., Hollema, H., Boezen, H. M., de Vries, E. G., de Jong, S., and van der Zee, A. G. (2005). Death receptors and ligands in cervical carcinogenesis: an immunohistochemical study. Gynecol Oncol 96, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Ricci, M. S., Jin, Z., Dews, M., Yu, D., Thomas-Tikhonenko, A., Dicker, D. T., and El-Deiry, W. S. (2004). Direct repression of FLIP expression by c-myc is a major determinant of TRAIL sensitivity. Mol Cell Biol 24, 8541–8555.

    Article  PubMed  CAS  Google Scholar 

  • Roa, W. H., Chen, H., Fulton, D., Gulavita, S., Shaw, A., Th’ng, J., Farr-Jones, M., Moore, R., and Petruk, K. (2003). X-linked inhibitor regulating TRAIL-induced apoptosis in chemoresistant human primary glioblastoma cells. Clin Invest Med 26, 231–242.

    PubMed  CAS  Google Scholar 

  • Roach, C., Sharifi, A., Askaa, J., Welcher, R., Chenoweth, D., Lincoln, C., Sosnovtseva, S., Zhao, Q., Johnson, R., Carrell, J., et al. (2004). Development of sensitive and specific immunohistochemical assays for pro-apoptotic TRAIL receptors. Paper presented at 95th AACR Meeting, Orlando, FL.

    Google Scholar 

  • Roth, W. and Reed, J. C. (2004). FLIP protein and TRAIL-induced apoptosis. Vitam Horm 67, 189–206.

    Article  PubMed  CAS  Google Scholar 

  • Salvesen, G. S. and Dixit, V. M. (1999). Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96, 10964–10967.

    Article  PubMed  CAS  Google Scholar 

  • Sayers, T. J. and Murphy, W. J. (2006). Combining proteasome inhibition with TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) for cancer therapy. Cancer Immunol Immunother 55, 76–84.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, P. and Tschopp, J. (2000). Apoptosis induced by death receptors. Pharm Acta Helv 74, 281–286.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, P., Thome, M., Burns, K., Bodmer, J. L., Hofmann, K., Kataoka, T., Holler, N., and Tschopp, J. (1997). TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 7, 831–836.

    Article  PubMed  CAS  Google Scholar 

  • Secchiero, P., Gonelli, A., Mirandola, P., Melloni, E., Zamai, L., Celeghini, C., Milani, D., and Zauli, G. (2002). Tumor necrosis factor-related apoptosis-inducing ligand induces monocytic maturation of leukemic and normal myeloid precursors through a caspase-dependent pathway. Blood 100, 2421–2429.

    Article  PubMed  CAS  Google Scholar 

  • Sheikh, M. S. and Fornace, A. J., Jr. (2000). Death and decoy receptors and p53-mediated apoptosis. Leukemia 14, 1509–1513.

    Article  PubMed  CAS  Google Scholar 

  • Shin, E. C., Ahn, J. M., Kim, C. H., Choi, Y., Ahn, Y. S., Kim, H., Kim, S. J., and Park, J. H. (2001). IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer 93, 262–268.

    Article  PubMed  CAS  Google Scholar 

  • Singh, T. R., Shankar, S., Chen, X., Asim, M., and Srivastava, R. K. (2003). Synergistic interactions of chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand/Apo-2 ligand on apoptosis and on regression of breast carcinoma in vivo. Cancer Res 63, 5390–5400.

    PubMed  CAS  Google Scholar 

  • Sinicrope, F. A., Penington, R. C., and Tang, X. M. (2004). Tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis is inhibited by Bcl-2 but restored by the small molecule Bcl-2 inhibitor, HA 14–1, in human colon cancer cells. Clin Cancer Res 10, 8284–8292.

    Article  PubMed  CAS  Google Scholar 

  • Soengas, M. S., Capodieci, P., Polsky, D., Mora, J., Esteller, M., Opitz-Araya, X., McCombie, R., Herman, J. G., Gerald, W. L., Lazebnik, Y. A., et al. (2001). Inactivation of the apoptosis effector Apaf-1 in malignant melanoma. Nature 409, 207–211.

    Article  PubMed  CAS  Google Scholar 

  • Soengas, M. S., Gerald, W. L., Cordon-Cardo, C., Lazebnik, Y., and Lowe, S. W. (2006). Apaf-1 expression in malignant melanoma. Cell Death Differ 13, 352–353.

    Article  PubMed  CAS  Google Scholar 

  • Song, J. H., Song, D. K., Herlyn, M., Petruk, K. C., and Hao, C. (2003a). Cisplatin down-regulation of cellular Fas-associated death domain-like interleukin-1beta-converting enzyme-like inhibitory proteins to restore tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human melanoma cells. Clin Cancer Res 9, 4255–4266.

    PubMed  CAS  Google Scholar 

  • Song, J. H., Song, D. K., Pyrzynska, B., Petruk, K. C., Van Meir, E. G., and Hao, C. (2003b). TRAIL triggers apoptosis in human malignant glioma cells through extrinsic and intrinsic pathways. Brain Pathol 13, 539–553.

    Article  PubMed  CAS  Google Scholar 

  • Spierings, D. C., de Vries, E. G., Timens, W., Groen, H. J., Boezen, H. M., and de Jong, S. (2003). Expression of TRAIL and TRAIL death receptors in stage III non-small cell lung cancer tumors. Clin Cancer Res 9, 3397–3405.

    PubMed  CAS  Google Scholar 

  • Spierings, D. C., de Vries, E. G., Vellenga, E., van den Heuvel, F. A., Koornstra, J. J., Wesseling, J., Hollema, H., and de Jong, S. (2004). Tissue distribution of the death ligand TRAIL and its receptors. J Histochem Cytochem 52, 821–831.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, R.K. (2001). TRAIL/Apo-2L: mechanisms and clinical applications in cancer. Neoplasia 3, 535–546.

    Article  PubMed  CAS  Google Scholar 

  • Strater, J., Hinz, U., Walczak, H., Mechtersheimer, G., Koretz, K., Herfarth, C., Moller, P., and Lehnert, T. (2002a). Expression of TRAIL and TRAIL receptors in colon carcinoma: TRAIL-R1 is an independent prognostic parameter. Clin Cancer Res 8, 3734–3740.

    PubMed  Google Scholar 

  • Strater, J., Walczak, H., Pukrop, T., Von Muller, L., Hasel, C., Kornmann, M., Mertens, T., and Moller, P. (2002b). TRAIL and its receptors in the colonic epithelium: a putative role in the defense of viral infections. Gastroenterology 122, 659–666.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, K., Smyth, M. J., Cretney, E., Hayakawa, Y., Kayagaki, N., Yagita, H., and Okumura, K. (2002). Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med 195, 161–169.

    Article  PubMed  CAS  Google Scholar 

  • Taniai, M., Grambihler, A., Higuchi, H., Werneburg, N., Bronk, S. F., Farrugia, D. J., Kaufmann, S. H., and Gores, G. J. (2004). Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64, 3517–3524.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L. R., Henson, A., Reed, J. C., Salsbury, F. R., and Thorburn, A. (2004a). Direct binding of Fas-associated death domain (FADD) to the tumor necrosis factor-related apoptosis-inducing ligand receptor DR5 is regulated by the death effector domain of FADD. J Biol Chem 279, 32780–32785.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, L. R., Johnson, R. L., Reed, J. C., and Thorburn, A. (2004b). The C-terminal tails of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas receptors have opposing functions in Fas-associated death domain (FADD) recruitment and can regulate agonist-specific mechanisms of receptor activation. J Biol Chem 279, 52479–52486.

    Article  PubMed  CAS  Google Scholar 

  • Tolcher, A. W., Chi, K., Kuhn, J., Gleave, M., Patnaik, A., Takimoto, C., Schwartz, G., Thompson, I., Berg, K., D’Aloisio, S., et al. (2005). A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin Cancer Res 11, 3854–3861.

    Article  PubMed  CAS  Google Scholar 

  • van Geelen, C. M., de Vries, E. G., Le, T. K., van Weeghel, R. P., and de Jong, S. (2003). Differential modulation of the TRAIL receptors and the CD95 receptor in colon carcinoma cell lines. Br J Cancer 89, 363–373.

    Article  PubMed  CAS  Google Scholar 

  • Van Geelen, C. M., de Vries, E. G., and de Jong, S. (2004). Lessons from TRAIL-resistance mechanisms in colorectal cancer cells: paving the road to patient-tailored therapy. Drug Resist Updat 7, 345–358.

    Article  PubMed  CAS  Google Scholar 

  • van Noesel, M. M., van Bezouw, S., Voute, P. A., Herman, J. G., Pieters, R., and Versteeg, R. (2003). Clustering of hypermethylated genes in neuroblastoma. Genes Chromosomes Cancer 38, 226–233.

    Article  PubMed  CAS  Google Scholar 

  • Vignati, S., Codegoni, A., Polato, F., and Broggini, M. (2002). Trail activity in human ovarian cancer cells: potentiation of the action of cytotoxic drugs. Eur J Cancer 38, 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Voelkel-Johnson, C. (2003). An antibody against DR4 (TRAIL-R1) in combination with doxorubicin selectively kills malignant but not normal prostate cells. Cancer Biol Ther 2, 283–290.

    PubMed  CAS  Google Scholar 

  • Vucic, D., Stennicke, H. R., Pisabarro, M. T., Salvesen, G. S., and Dixit, V. M. (2000). ML-IAP, a novel inhibitor of apoptosis that is preferentially expressed in human melanomas. Curr Biol 10, 1359–1366.

    Article  PubMed  CAS  Google Scholar 

  • Wachter, T., Sprick, M., Hausmann, D., Kerstan, A., McPherson, K., Stassi, G., Brocker, E. B., Walczak, H., and Leverkus, M. (2004). cFLIPL inhibits tumor necrosis factor-related apoptosis-inducing ligand-mediated NF-kappaB activation at the death-inducing signaling complex in human keratinocytes. J Biol Chem 279, 52824–52834.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, H. and Sprick, M. R. (2001). Biochemistry and function of the DISC. Trends Biochem Sci 26, 452–453.

    Article  PubMed  CAS  Google Scholar 

  • Walczak, H., Miller, R. E., Ariail, K., Gliniak, B., Griffith, T. S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5, 157–163.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S. and El-Deiry, W. S. (2003). TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22, 8628–8633.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Sampath, J., Fukuda, S., and Pelus, L. M. (2005). Disruption of the inhibitor of apoptosis protein survivin sensitizes Bcr-abl-positive cells to STI571-induced apoptosis. Cancer Res 65, 8224–8232.

    Article  PubMed  CAS  Google Scholar 

  • Wei, M. C., Lindsten, T., Mootha, V. K., Weiler, S., Gross, A., Ashiya, M., Thompson, C. B., and Korsmeyer, S. J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14, 2060–2071.

    PubMed  CAS  Google Scholar 

  • Wendt, J., von Haefen, C., Hemmati, P., Belka, C., Dorken, B., and Daniel, P. T. (2005). TRAIL sensitizes for ionizing irradiation-induced apoptosis through an entirely Bax-dependent mitochondrial cell death pathway. Oncogene 24, 4052–4064.

    PubMed  CAS  Google Scholar 

  • Whang, Y. E., Yuan, X. J., Liu, Y., Majumder, S., and Lewis, T. D. (2004). Regulation of sensitivity to TRAIL by the PTEN tumor suppressor. Vitam Horm 67, 409–426.

    Article  PubMed  CAS  Google Scholar 

  • Wolf, S., Mertens, D., Pscherer, A., Schroeter, P., Winkler, D., Grone, H. J., Hofele, C., Hemminki, K., Kumar, R., Steineck, G., et al. (2006). Ala228 variant of trail receptor 1 affecting the ligand binding site is associated with chronic lymphocytic leukemia, mantle cell lymphoma, prostate cancer, head and neck squamous cell carcinoma and bladder cancer. Int J Cancer 118, 1831–1835.

    Article  PubMed  CAS  Google Scholar 

  • Wu, W. G., Soria, J. C., Wang, L., Kemp, B. L., and Mao, L. (2000). TRAIL-R2 is not correlated with p53 status and is rarely mutated in non-small cell lung cancer. Anticancer Res 20, 4525–4529.

    PubMed  CAS  Google Scholar 

  • Xiao, C., Yang, B. F., Song, J. H., Schulman, H., Li, L., and Hao, C. (2005). Inhibition of CaMKII-mediated c-FLIP expression sensitizes malignant melanoma cells to TRAIL-induced apoptosis. Exp Cell Res 304, 244–255.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Uzzo, R. G., Pimkina, J., Makhov, P., Golovine, K., Crispen, P., and Kolenko, V. M. (2005a). Methylseleninic acid sensitizes prostate cancer cells to TRAIL-mediated apoptosis. Oncogene 24, 5868–5877.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Shiraki, K., Fuke, H., Inoue, T., Miyashita, K., Yamanaka, Y., Saitou, Y., Sugimoto, K., and Nakano, T. (2005b). Targeting of X-linked inhibitor of apoptosis protein or survivin by short interfering RNAs sensitize hepatoma cells to TNF-related apoptosis-inducing ligand- and chemotherapeutic agent-induced cell death. Oncol Rep 14, 1311–1316.

    PubMed  CAS  Google Scholar 

  • Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., et al. (1998). FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, H., Kong, Y. Y., Yoshida, R., Elia, A. J., Hakem, A., Hakem, R., Penninger, J. M., and Mak, T. W. (1998). Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739–750.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, T., Shiraishi, T., Nakata, S., Horinaka, M., Wakada, M., Mizutani, Y., Miki, T., and Sakai, T. (2005). Proteasome inhibitor MG132 induces death receptor 5 through CCAAT/enhancer-binding protein homologous protein. Cancer Res 65, 5662–5667.

    Article  PubMed  CAS  Google Scholar 

  • Yu, C., Bruzek, L. M., Meng, X. W., Gores, G. J., Carter, C. A., Kaufmann, S. H., and Adjei, A. A. (2005). The role of Mcl-1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43–9006. Oncogene 24, 6861–6869.

    Article  PubMed  CAS  Google Scholar 

  • Zeng, Y., Wu, X. X., Fiscella, M., Shimada, O., Humphreys, R., Albert, V., and Kakehi, Y. (2006). Monoclonal antibody to tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2) induces apoptosis in primary renal cell carcinoma cells in vitro and inhibits tumor growth in vivo. Int J Oncol 28, 421–430.

    PubMed  CAS  Google Scholar 

  • Zhang, H. G., Wang, J., Yang, X., Hsu, H. C., and Mountz, J. D. (2004). Regulation of apoptosis proteins in cancer cells by ubiquitin. Oncogene 23, 2009–2015.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L. and Fang, B. (2005). Mechanisms of resistance to TRAIL-induced apoptosis in cancer. Cancer Gene Ther 12, 228–237.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, L., Yu, J., Park, B. H., Kinzler, K. W., and Vogelstein, B. (2000). Role of BAX in the apoptotic response to anticancer agents. Science 290, 989–992.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Cheung, R. M., Komaki, R., Fang, B., and Chang, J. Y. (2005). Radiotherapy sensitization by tumor-specific TRAIL gene targeting improves survival of mice bearing human non-small cell lung cancer. Clin Cancer Res 11, 6657–6668.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., Guo, W., Zhang, L., Davis, J. J., Wu, S., Teraishi, F., Cao, X., Smythe, W. R., and Fang, B. (2005a). Enhancing TRAIL-induced apoptosis by Bcl-X(L) siRNA. Cancer Biol Ther 4, 393–397.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, H., Guo, W., Zhang, L., Wu, S., Teraishi, F., Davis, J. J., Dong, F., and Fang, B. (2005b). Proteasome inhibitors-mediated TRAIL resensitization and Bik Accumulation. Cancer Biol Ther 4, 781–786.

    Article  PubMed  CAS  Google Scholar 

  • Zuzak, T. J., Steinhoff, D. F., Sutton, L. N., Phillips, P. C., Eggert, A., and Grotzer, M. A. (2002). Loss of caspase-8 mRNA expression is common in childhood primitive neuroectodermal brain tumour/medulloblastoma. Eur J Cancer 38, 83–91.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Humphreys, R.C., Halpern, W. (2008). Trail Receptors: Targets for Cancer Therapy. In: Programmed Cell Death in Cancer Progression and Therapy. Advances in Experimental Medicine and Biology, vol 615. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6554-5_7

Download citation

Publish with us

Policies and ethics