Skip to main content

Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications

  • Chapter
Book cover Nanotechnology and Occupational Health

Abstract

Functional nanocrystals are widely considered as novel building blocks for nanostructured materials and devices. Numerous synthesis approaches have been proposed in the solid, liquid and gas phase. Among the gas phase approaches, low pressure nonthermal plasmas offer some unique and beneficial features. Particles acquire a unipolar charge which reduces or eliminates agglomeration; particles can be electrostatically confined in a reactor based on their charge; strongly exothermic reactions at the particle surface heat particles to temperatures that significantly exceed the gas temperature and facilitate the formation of high quality crystals. This paper discusses two examples for the use of low pressure nonthermal plasmas. The first example is that of a constricted capacitive plasma for the formation of highly monodisperse, cubic-shaped silicon nanocrystals with an average size of 35 nm. The growth process of the particles is discussed. The silicon nanocubes have successfully been used as building blocks for nanoparticle-based transistors. The second example focuses on the synthesis of photoluminescent silicon crystals in the 3–6 nm size range. The synthesis approach described has enabled the synthesis of macroscopic quantities of quantum dots, with mass yields of several mg/hour. Quantum yields for photoluminescence as high as 67% have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alivisatos A.P., 1996. Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937.

    Article  CAS  Google Scholar 

  • Baldwin R.K., K.A. Pettigrew, J.C. Garno, P.P. Power, G.-Y. Liu & S.M. Kauzlarich, 2002. Room temperature solution synthesis of alkyl-capped tetrahedral shaped silicon nanocrystals. J. Am. Chem. Soc. 124(7), 1150–1151.

    Article  CAS  Google Scholar 

  • Banerjee S., S. Huang, T. Yamanaka & S. Oda, 2002. Evidence of storing and erasing of electrons in a nanocrystalline-Si based memory device at 77 K. J. Vac. Sci. Technol. B 20(3), 1135–1138.

    Article  CAS  Google Scholar 

  • Bapat A., C. Anderson, C.R. Perrey, C.B. Carter, S.A. Campbell & U. Kortshagen, 2004. Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys. Controlled Fusion 46(12), B97–B109.

    Article  CAS  Google Scholar 

  • Barnard A. & P. Zapol, 2004. A model for the phase stability of arbitrary nanoparticles as a function of size and shape. J. Chem. Phys. 121(9), 4276–4283.

    Article  CAS  Google Scholar 

  • Batson P.E. & J.R. Heath, 1993. Electron energy loss spectroscopy of single silicon nanocrystals: the conduction band. Phys. Rev. Lett. 71(6), 911–914.

    Article  CAS  Google Scholar 

  • Borsella E., M. Falconieri, S. Botti, S. Martelli, F. Bignoli, L. Costa, S. Grandi, L. Sangaletti, B. Allieri & L. Depero, 2001. Optical and morphological characterization of Si nanocrystals/silica composites prepared by sol-gel processing. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. B 79(1), 55–62.

    Google Scholar 

  • Bouchoule A. & L. Boufendi, 1993. Particulate formation and dusty plasma behaviour in argon-silane RF discharge. Plasma Sources Sci. Technol. 2, 204.

    Article  CAS  Google Scholar 

  • Boufendi L. & A. Bouchoule, 1994. Particle nucleation and growth in a low-pressure argon-silane discharge. Plasma Sources Sci. Technol. 3, 263.

    Article  Google Scholar 

  • Brus L.E., 1991. Quantum crystallites and nonlinear optics. Appl. Phys. A 53, 465–474.

    Article  Google Scholar 

  • Brus L.E., P.J. Szajowski, W.L. Wilson, T.D. Harris, S. Schuppler & P.H. Citrin, 1995. Electronic spectroscopy and photophysics of Si nanocrystals: relationship to bulk c-Si and porous Si. J. Am. Chem. Soc. 117, 2915–2922.

    Article  CAS  Google Scholar 

  • Buriak J.M., 2002. Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102(5), 1271–1308.

    Article  CAS  Google Scholar 

  • Campbell, S.A., U. Kortshagen, A. Bapat, Y. Dong, S. Hilchie & Z. Shen, 2004. The Production and electrical characterization of free standing cubic single crystal silicon nanoparticles. J. Mater 56(10), 26–28.

    CAS  Google Scholar 

  • Canham L., 2000. Gaining light from silicon. Nature 408, 411–412.

    Article  CAS  Google Scholar 

  • Canham L.T., 1990. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046.

    Article  CAS  Google Scholar 

  • Carlile R.N., S. Geha, J.F. O’Hanlon & J.C. Stewart, 1991. Electrostatic trapping of contamination particles in a process plasma environment. Appl. Phys. Lett. 59, 1167.

    Article  CAS  Google Scholar 

  • Collins R.T., P.M. Fauchet & M.A. Tischler, 1997. Porous silicon: from luminescence to LEDs. Phys. Today 50, 24.

    CAS  Google Scholar 

  • Colvin V.L., M.C. Schlamp & A.P. Alivisatos, 1994. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488), 354–357.

    Article  CAS  Google Scholar 

  • Cullis A.G. & L.T. Canham, 1991. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 335, 335–338.

    Article  Google Scholar 

  • Dabbousi B.O., M.G. Bawendi, O. Onitsuka & M.F. Rubner, 1995. Electroluminescence from Cdse quantum-dot polymer composites. Appl. Phys. Lett. 66(11), 1316–1318.

    Article  CAS  Google Scholar 

  • Ding, Y., Y. Dong, A. Bapat, J. Deneen, C.B. Carter, U. Kortshagen & S.A. Campell, 2005. Single nanoparticle semiconductor devices. IEEE Trans. Electron Dev. (accepted for publication).

    Google Scholar 

  • Ding Z., B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel & A.J. Bard, 2002. Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296, 1293–1297.

    Article  CAS  Google Scholar 

  • Draeger E.W., J.C. Grossman, A.J. Williamson & G. Galli, 2004. Optical properties of passivated silicon nanoclusters: The role of synthesis. J. Chem. Phys. 120(22), 10807–10814.

    Article  CAS  Google Scholar 

  • Eaglesham D.J., A.E. White, L.C. Feldman, N. Moriya & D.C. Jacobson, 1993. Equilibrium shape of Si. Phys. Rev. Lett. 70(11), 1643–1646.

    Article  CAS  Google Scholar 

  • Ehbrecht M. & F. Huisken, 1999. Gas-phase characterization of silicon nanoclusters produced by laser pyrolysis of silane. Phys. Rev. B: Condens. Matter Mater. Phys. 59(4), 2975–2985.

    CAS  Google Scholar 

  • Franzò G., A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica & F. Priolo, 2002. Electroluminescence of silicon nanocrystals in MOS structures. Appl. Phys. A: Mat. Sci. Proc. 74, 1–5.

    Article  Google Scholar 

  • Friedlander S.K., 2000 Smoke, Dust, and Haze — Fundamentals of Aerosol Dynamics. New York: Oxford University Press.

    Google Scholar 

  • Fu Y., M. Willander, A. Dutta & S. Oda, 2000. Carrier conduction in a Si-nanocrystal-based single-electron transistor-I. Effect of gate bias. Superlattices Microstruct 28(3), 177–187.

    Article  CAS  Google Scholar 

  • Furukawa S. & T. Miyasato, 1988. Three-dimensional quantum well effects in ultrafine silicon particles. Jpn. J. Appl. Phys. 27(11), L2207.

    Google Scholar 

  • Gerberich W.W., W.M. Mook, C.R. Perrey, C.B. Carter, M.I. Baskes, R. Mukherjee, A. Gidwani, J. Heberlein, P.H. McMurry & S.L. Girshick, 2003. Superhard silicon nanospheres. J. Mech. Phys. Solids. 51, 979–992.

    Article  CAS  Google Scholar 

  • Goldstein A.N., C.M. Echer & A.P. Alivisatos, 1992. Melting in semiconductor nanocrystals. Science 256, 1425–1427.

    Article  CAS  Google Scholar 

  • Goree J., 1994. Charging of particles in a plasma. Plasma Sources Sci. Technol. 3, 400.

    Article  CAS  Google Scholar 

  • Holmes J.D., K.J. Ziegler, C. Doty, L.E. Pell, K.P. Johnston & B.A. Korgel, 2001. Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743–3748.

    Article  CAS  Google Scholar 

  • Holtz R.L., V. Provenzano & M.A. Imam, 1996. Overview of nanophase metals and alloys for gas sensors, getters, and hydrogen storage. Nanostruct. Mater. 7, 259–264.

    Article  CAS  Google Scholar 

  • Huisken F., D. Amans, G. Ledoux, H. Hofmeister, F. Cichos & J. Martin, 2003. Nanostructuration with visible-light-emitting silicon nanocrystals. New J. Phys. 5, 1–10Paper No. 10.

    Article  CAS  Google Scholar 

  • Kennedy M.K., F.E. Kruis, H. Fissan & B.R. Mehta, 2003. Fully automated, gas sensing, and electronic parameter measurement setup for miniaturized nanoparticle gas sensors. Rev. Sci. Instr. 74(11), 4908–4915.

    Article  CAS  Google Scholar 

  • Kennedy M.K., F.E. Kruis, H. Fissan, B.R. Mehta, S. Stappert & G. Dumpich, 2003. Tailored nanoparticle films from monosized tin oxide nanocrystals: particle synthesis, film formation, and size-dependent gas-sensing properties. J. Appl. Phys. 93(1), 551–560.

    Article  CAS  Google Scholar 

  • Kim T.W., D.C. Choo, J.H. Shim & S.O. Kang, 2002. Single-electron transistors operating at room temperature, fabricated utilizing nanocrystals created by focused-ion beam. Appl. Phys. Lett. 80(12), 2168–2170.

    Article  CAS  Google Scholar 

  • Klein D.L., R. Roth, A.K.L. Lim, A.P. Alivisatos & P.L. McEuen, 1997. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389, 699–701.

    Article  CAS  Google Scholar 

  • Kortshagen U. & U. Bhandarkar, 1999. Modeling of particulate coagulation in low pressure plasmas. Phys. Rev. E 60(1), 887.

    Article  CAS  Google Scholar 

  • Ledoux G., J. Gong, F. Huisken, O. Guillois & C. Reynaud, 2002. Photoluminescence of size-separated silicon nanocrystals: confirmation of quantum confinement. Appl. Phys. Lett. 80(25), 4834–4836.

    Article  CAS  Google Scholar 

  • Ledoux G., O. Guillois, D. Porterat, C. Reynaud, F. Huisken, B. Kohn & V. Paillard, 2000. Photoluminescence properties of silicon nanocrystals as a function of their size. Phys. Rev. B 62(23), 15942–15951.

    Article  CAS  Google Scholar 

  • Li X., Y. He, S.S. Talukdar & M.T. Swihart, 2003. Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19(20), 8490–8496.

    Article  CAS  Google Scholar 

  • Littau K.A., P.J. Szajowski, A.J. Muller, A.R. Kortan & L.E. Brus, 1993. A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97, 1224–1230.

    Article  CAS  Google Scholar 

  • Mangolini L., E. Thimsen & U. Kortshagen, 2005. High-yield plasma synthesis of luminescent silicon nanocrystals. Nano Lett. 5(4), 655–659.

    Article  CAS  Google Scholar 

  • Matsoukas T., 1997. The coagulation rate of charged aerosols in ionized gases. J. Colloid. Interface Sci. 187, 474.

    Article  CAS  Google Scholar 

  • Matsoukas T. & M. Russel, 1995. Particle charging in low-pressure plasmas. J. Appl. Phys. 77, 4285.

    Article  CAS  Google Scholar 

  • Nayfeh M., O. Akcakir, J. Therrien, Z. Yamani, N. Barry, W. Yu & E. Gratton, 1999. Highly nonlinear photoluminescence threshold in porous silicon. Appl. Phys. Lett. 75(26), 4112–4114.

    Article  CAS  Google Scholar 

  • Nayfeh M.H., N. Barry, J. Therrien, O. Akcakir, E. Gratton & G. Belomoin, 2001. Stimulated blue emission in reconstituted films of ultrasmall silicon nanoparticles. Appl. Phys. Lett. 78(8), 1131–1133.

    Article  CAS  Google Scholar 

  • Nishiguchi K. & S. Oda, 2000. Electron transport in a single silicon quantum structure using a vertical silicon probe. J. Appl. Phys. 88(7), 4186–4190.

    Article  CAS  Google Scholar 

  • Onischuk A.A., A.I. Levykin, V.P. Strunin, K.K. Sabelfeld & V.N. Panfilov, 2000. Aggregate formation under homogeneous silane thermal decomposition. J. Aerosol Sci. 31(11), 1263–1281.

    Article  CAS  Google Scholar 

  • Onischuk A.A., A.I. Levykin, V.P. Strunin, M.A. Ushakova, R.I. Samoilova, K.K. Sabelfeld & V.N. Panfilov, 2000. Aerosol formation under heterogeneous/homogeneous thermal decomposition of silane: experiment and numerical modeling. J. Aerosol Sci. 31(8), 879–906.

    Article  CAS  Google Scholar 

  • O’Regan B. & M. Grätzel, 1991. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737.

    Article  CAS  Google Scholar 

  • Ostraat M.L., J.W. De Blauwe, M.L. Green, L.D. Bell, H.A. Atwater & R.C. Flagan, 2001a. Ultraclean two-stage aerosol reactor for production of oxide-passivated silicon nanoparticles for novel memory devices. J. Electrochem. Soc. 148(5), G265–G270.

    Article  CAS  Google Scholar 

  • Ostraat M.L., J.W. De Blauwe, M.L. Green, L.D. Bell, M.L. Brongersma, J. Casperson, R.C. Flagan & H.A. Atwater, 2001b. Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices. Appl. Phys. Lett. 79(3), 433–435.

    Article  CAS  Google Scholar 

  • Park N.-M., T.-S. Kim & S.-J. Park, 2001. Band gap engineering of amorphous silicon quantum dots for light-emitting diodes. Appl. Phys. Lett. 78(17), 2575–2577.

    Article  CAS  Google Scholar 

  • Pettigrew K.A., Q. Liu, P.P. Power & S.M. Kauzlarich, 2003. Solution synthesis of alkyl-and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem. Mater. 15(21), 4005–4011.

    Article  CAS  Google Scholar 

  • Puzder A., A.J. Williamson, J.C. Grossman & G. Galli, 2002. Surface chemistry of silicon nanoclusters. Phys. Rev. Lett. 88(9), 097401–097404.

    Article  CAS  Google Scholar 

  • Puzder A., A.J. Williamson, J.C. Grossman & G. Galli, 2003. Computational studies of the optical emission of silicon nanocrystals. J. Am. Chem. Soc. 125(9), 2786–2791.

    Article  CAS  Google Scholar 

  • Reboredo F.A., A. Franceschetti & A. Zunger, 1999. Excitonic transitions and exchange splitting in Si quantum dots. Appl. Phys. Lett. 75(19), 2972–2974.

    Article  CAS  Google Scholar 

  • Sankaran R.M., D. Holunga, R.C. Flagan & K.P. Giapis, 2005. Synthesis of blue luminescent Si nanoparticles using atmospheric-pressure microdischarges. Nano Lett. 5(3), 531–535.

    Article  CAS  Google Scholar 

  • Schweigert V.A. & I.V. Schweigert, 1996. Coagulation in low-temperature plasmas. J. Phys. D: Appl. Phys. 29, 655.

    Article  CAS  Google Scholar 

  • Selwyn G.S., K.L. Haller & E.F. Patterson, 1993. Trapping and behavior of particulates in a radio frequency magnetron etching tool. J. Vac. Sci. Technol. A 11, 1132.

    Article  CAS  Google Scholar 

  • Selwyn G.S., J.E. Heidenreich & H.L. Haller, 1990. Particle trapping phenomena in radio frequency plasmas. Appl. Phys. Lett. 57, 1876.

    Article  CAS  Google Scholar 

  • Shen Z., T. Kim, U. Kortshagen, P. McMurry & S. Campbell, 2003. Formation of highly uniform silicon nanoparticles in high density silane plasmas. J. Appl. Phys. 94(4), 2277–2283.

    Article  CAS  Google Scholar 

  • Shi F.G., 1994. Size dependent thermal vibrations and melting in nanocrystals. J. Mater. Res. 9(5), 1307–1312.

    CAS  Google Scholar 

  • St. John J., J.L. Coffer, Y. Chen & R.F. Pinizzotto, 1999. Synthesis and characterization of discrete luminescent erbium-doped silicon nanocrystals. J. Am. Chem. Soc. 121, 1888–1892.

    Article  CAS  Google Scholar 

  • Stekolnikov A.A., J. Furthmüller & F. Bechstedt, 2002. Absolute surface energies of group-IV semiconductors: dependence on orientation and reconstruction. Phys. Rev. B 65, 115318.

    Article  CAS  Google Scholar 

  • Stoffels E., W.W. Stoffels, G.M.W. Kroesen & F.J.D. Hoog, 1996. Dust formation and charging in an Ar/SiH4 radio-frequency discharge. J. Vac. Sci. Technol. A 14, 556.

    Article  CAS  Google Scholar 

  • Takahashi N., H. Ishikuro & T. Hiramoto, 2000. Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl. Phys. Lett. 76(2), 209–211.

    Article  CAS  Google Scholar 

  • Tiwari S., F. Rana, K. Chan, L. Shi & H. Hanafi, 1996a. Single charge and confinement effects in nano-crystal memories. Appl. Phys. Lett. 69, 1232.

    Article  CAS  Google Scholar 

  • Tiwari S., F. Rana, H. Hanafi, A. Hartstein, E.F. Crabbé & K. Chan, 1996b. A silicon nanocrystals based memory. Appl. Phys. Lett. 68, 1377.

    Article  CAS  Google Scholar 

  • Vasiliev I., J.R. Chelikowsky & R.M. Martin, 2002. Surface oxidation effects on the optical properties of silicon nanocrystals. Phys. Rev. B (Condensed Matter and Materials Physics) 65(12), 121302.

    Article  CAS  Google Scholar 

  • Volkening F.A., M.N. Naidoo, G.A. Candela, R.L. Holtz & V. Provenzano, 1995. Characterization of nanocrystalline palladium for solid state gas sensor applications. Nanostruct. Mater. 5, 373–382.

    Article  CAS  Google Scholar 

  • Watanabe Y. & M. Shiratani, 1993. Growth kinetics and behavior of dust particles in silane plasmas. Jpn. J. Appl. Phys. 32, 3074.

    Article  CAS  Google Scholar 

  • Wilcoxon J.P. & G.A. Samara, 1999. Tailorable, visible light emission from silicon nanocrystals. Appl. Phys. Lett. 74(21), 3164–3166.

    Article  CAS  Google Scholar 

  • Wilcoxon J.P., G.A. Samara & P.N. Provencio, 1999. Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60(4), 2704–2714.

    Article  CAS  Google Scholar 

  • Wolkin M.V., J. Jorne, P.M. Fauchet, G. Allan & C. Delerue, 1999. Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys. Rev. Lett. 82(1), 197.

    Article  CAS  Google Scholar 

  • Zhang Z., M. Zhao & Q. Jiang, 2001. Melting temperature of semiconductor nanocrystals in the mesoscopic size range. Semicond. Sci. Technol. 16, L33–L35.

    Article  CAS  Google Scholar 

  • Zhou Z., L. Brus & R. Friesner, 2003a. Electronic structure and luminescence of 1.1-and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett. 3(2), 163–167.

    Article  CAS  Google Scholar 

  • Zhou Z., R.A. Friesner & L. Brus, 2003b. Electronic structure of 1 to 2 nm diameter silicon core/shell nanocrystals: surface chemistry, optical spectra, charge transfer, and doping. J. Am. Chem. Soc. 125, 15599–15607.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Kortshagen, U., Mangolini, L., Bapat, A. (2006). Plasma synthesis of semiconductor nanocrystals for nanoelectronics and luminescence applications. In: Maynard, A.D., Pui, D.Y.H. (eds) Nanotechnology and Occupational Health. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5859-2_5

Download citation

Publish with us

Policies and ethics