Skip to main content

How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics

  • Chapter
  • First Online:
Book cover Dendroclimatology

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 11))

Abstract

We develop an observational and conceptual basis for modeling conifer cambial processes as a direct but nonlinear and multivariate response to external environmental conditions. The model, here termed Vaganov–Shashkin (VS), reproduces the critical features linking climate variability to tree-ring proxy formation. We discuss recent test simulations of tree-ring width data from a variety of sites and spatiotemporal scales. Our experiments demonstrate that the model skillfully reproduces observed patterns of tree-ring growth across a range of environments, species, and scales. Model performance is found to be robust to parameter estimation. We discuss present and future applications of the VS model, including exploration of the biological basis of emergent phenomena and prediction of the influence of climate change on conifer tree growth dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe H, Nakai T, Utsumi Y, Kagawa A (2003) Temporal water deficit and wood formation in Cryptomeria japonica. Tree Physiol 23(12):859–863

    Google Scholar 

  • Alexeev VA (1975) The light regime in forests (in Russian). Nauka, Leningrad, 227 pp

    Google Scholar 

  • Alfieri FJ, Evert RF (1968) Seasonal development of the secondary phloem in Pinus. Am J Bot 55:518–528

    Google Scholar 

  • Anchukaitis KJ, Evans MN, Kaplan A, Vaganov EA, Hughes MK, Grissino-Mayer HD, Cane MA (2006) Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought. Geophys Res Lett 33:L04705. doi:10.1029/2005GL025050

    Google Scholar 

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7:214–219

    Google Scholar 

  • Antonova GF, Stasova VV (1997) Effects of environmental factors on wood formation in larch (Larix sibirica Ldb.) stems. Trees 11:462–468

    Google Scholar 

  • Antonova GF, Cherkashin VP, Stasova VV, Varaksina TN (1995) Daily dynamics in xylem cell radial growth of Scots pine (Pinus sylvestris). Trees 10:24–30

    Google Scholar 

  • Aykroyd RG, Lucy D, Pollard AM, Carter AHC, Robertson I (2001) Temporal variability in the strength of proxy-climate correlations. Geophys Res Lett 28:1559–1562

    Google Scholar 

  • Baluska F, Barlow PW, Kubica S (1994) Importance of the post-mitotic growth (PIG) region for growth and development of roots. Plant Soil 167:31–42

    CAS  Google Scholar 

  • Baluska F, Volkmann D, Barlow PW (1996) Specialized zones of development in roots: view from the cellular level. Plant Physiol 112:3–4

    CAS  Google Scholar 

  • Baluska F, Volkmann D, Barlow PW (2001) A polarity crossroad in the transition growth zone of maize root apices: cytoskeletal and developmental implications. Plant Growth Regul 20:170–181

    CAS  Google Scholar 

  • Bannan MW (1955) The vascular cambium and radial growth in Thuja occidentalis L. Can J Bot 33(2):113–138

    Google Scholar 

  • Bannan MW (1957) The relative frequency of the different types of anticlinal divisions. Can J Bot 35:875–884

    Google Scholar 

  • Bannan MW (1962) The vascular cambium and tree-ring development. In: Kozlovski TT (ed) Tree growth. Ronald Press, New York, pp 3–21

    Google Scholar 

  • Barnett JR (ed) (1981) Xylem cell development. Castle House Publications, Tunbridge Wells, Kent, 307 pp

    Google Scholar 

  • Bassow S, Ford E, Kiester AR (1990) A critique of carbon-based tree growth models. In: Dixon R, Meldahl R, Ruark G, Warren W (eds) Process-modeling of forest growth responses to environmental stress. Timber Press, Portland, Oregon, pp 50–57

    Google Scholar 

  • Biondi F (2000) Are climate-tree growth relationships changing in North-Central Idaho, USA? Arctic Alpine Res 32:111–116

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30(3):303–311

    Google Scholar 

  • Bräuning A (1999) Dendroclimatological potential of drought-sensitive tree stands in southern Tibet for the reconstruction of monsoon activity. IAWA J 20:325–338

    Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of plant cell wall, 2nd edn. Chapman and Hall, London, 255 pp

    Google Scholar 

  • Briffa KR, Bartholin TS, Eckstein D, Jones PD, Karlen W, Schweingruber FH, Zetterberg PA (1990) A 1,400-year tree ring record of summer temperatures in Fennoscandia. Nature 346:434–439

    Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH (1992) Tree-ring density reconstructions of summer temperature patterns across western North America since 1600. J Climate 5:735–754

    Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD (1998a) Trees tell of past climates: but are they speaking less clearly today? Phil Trans R Soc 352: 65–73

    Google Scholar 

  • Briffa KR, Schweingruber FH, Jones PD, Osborn TJ, Shiyatov SG, Vaganov EA (1998b) Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391:678–682

    CAS  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA (2001) Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–2941

    Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH (2004) Large-scale temperature inferred from tree rings: a review. Global Planet Change 40:11–26

    Google Scholar 

  • Brown CL, Sax K (1962) The influence of pressure on the differentiation of secondary tissues. Am J Bot 49:693

    Google Scholar 

  • Carlquist S (1988a) Comparative wood anatomy: systematic, ecological and evolutionary aspects of dicotyledon wood. Springer-Verlag, Berlin, Heidelberg, New York, 460 pp

    Google Scholar 

  • Carlquist S (1988b) Near-vesselessness in Ephedra and its significance. Am J Bot 75:598–601

    Google Scholar 

  • Casgrove DJ (1993) How do plant cell walls extend? Plant Physiol 102:1–6

    Google Scholar 

  • Catesson AM (1984) La dynamique cambial. Ann Sci Nat Bot 13(6):23–43

    Google Scholar 

  • Catesson AM (1990) Cambial cytology and biochemistry. In: Iqbal M (ed) The vascular cambium. Research Studies Press, Taunton, England, pp 63–112

    Google Scholar 

  • Catesson AM (1994) Cambial ultrastructure and biochemistry: changes in relation to vascular tissue differentiation and the seasonal cycle. Int J Plant Sci 155(3):251–261

    CAS  Google Scholar 

  • Catesson AM, Roland JC (1981) Sequential changes associated with cell wall formation and fusion in the vascular cambium. IAWA Bull 2:151–162

    Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plantarum 114:594–600

    CAS  Google Scholar 

  • Cook ER, Jacoby GC (1977) Tree-ring-drought relationships in the Hudson Valley, NY. Science 198:399–401

    CAS  Google Scholar 

  • Cook ER, Meko DM, Stahle DW, Cleaveland MK (1999) Drought reconstructions for the continental United States. J Climate 12:1145–1162

    Google Scholar 

  • Cook ER, Palmer JG, D’Arrigo, RD (2002) Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophys Res Lett 29(14). doi:10.1029/2001GL014580

    Google Scholar 

  • Cook ER, Woodhouse CA, Eakin CM, Meko DM, Stahle DW (2004) Long-term aridity changes in the western United States. Science 306(5698):1015–1018

    CAS  Google Scholar 

  • Creber GT, Chaloner WG (1984) Influence of environmental factors on the wood structure of living and fossil trees. Bot Rev 50:357–448

    Google Scholar 

  • D’Arrigo RD, Jacoby GC, Free RM (1992) Tree-ring width and maximum latewood density at the North American tree line: parameters of climatic change. Can J Forest Res 22:1290–1296

    Google Scholar 

  • Demura T, Fukuda H (1994) Novel vascular cell-specific genes whose expression is regulated temporally and spatially during vascular system development. Plant Cell 6:967–981

    CAS  Google Scholar 

  • Dengler N (2001) Regulation of vascular development. Plant Growth Regul 20(1):1–13

    CAS  Google Scholar 

  • Denne MP (1971) Temperature and tracheid development in Pinus sylvestris seedlings. J Exp Bot 22:362–370

    Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House Publishing, Tunbridge Wells, Kent, pp 237–255

    Google Scholar 

  • Deslauriers A, Morin H (2005) Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables. Trees-Struct Funct 19(4):402–408

    Google Scholar 

  • Deslauriers A, Morin H, BéginY (2003) Cellular phenology of annual ring formation of Abies balsamea in the Québec boreal forest (Canada). Can J Forest Res 33:190–200

    Google Scholar 

  • Dickson RE, Tomlinson PT, Isebrands JG (2000) Partitioning of current photosynthate to different chemical fractions in leaves, stems, and roots of northern red oak seedlings during episodic growth. Can J Forest Res 30:1308–1317

    CAS  Google Scholar 

  • Dodd RS, Fox P (1990) Kinetics of tracheid differentiation in Douglas-fir. Ann Bot 65:649–657

    Google Scholar 

  • Downes GM, Turvey ND (1990) The effect of nitrogen and copper on the characteristics of woody tissue in seedling of Pinus radiata. Can J Forest Res 20: 369–377

    Google Scholar 

  • Ericsson A, Larsson S, Tenow O (1980) Effects of early and late season defoliation on growth and carbohydrate dynamics in Scots pine. J Appl Ecol 17(3):747–769

    Google Scholar 

  • Evans MN, Reichert BK, Kaplan A, Anchukaitis KJ, Vaganov EA, Hughes MK, Cane MA (2006) A forward modeling approach to paleoclimatic interpretation of tree-ring data. Geophys Res 111:G03008. doi:10.1029/2006JG000166

    Google Scholar 

  • Filion L, Payette S, Gauthier L, Boutin Y (1986) Light rings in subarctic conifers as a dendrochronological tool. Quaternary Res (NY) 26:272–279

    Google Scholar 

  • Fritts HC (1966) Growth rings of trees: their correlation with climate. Science 154:973–979

    CAS  Google Scholar 

  • Fritts HC (1976) Tree rings and climate. Academic, New York, 567 pp

    Google Scholar 

  • Fritts HC, Lofgren GR, Gordon GA (1979) Variations in climate since 1602 as reconstructed from tree rings. Quaternary Res 12(1):18–46

    Google Scholar 

  • Fritts HC, Vaganov EA, Sviderskaya IV, Shashkin AV (1991) Climatic variation and tree-ring structure in conifers: a statistical simulative model of tree-ring width, number of cells, cell wall-thickness and wood density. Climate Res 1(6):37–54

    Google Scholar 

  • Fritts HC, Shashkin AV, Downes GM (1999) A simulation model of conifer ring growth and cell structure. In: Wimmer R, Vetter RE (eds) Tree-ring analysis. Cambridge University Press, Cambridge, UK, pp 3–32

    Google Scholar 

  • Fukuda H (1994) Redifferentiation of single mesophyll cells into tracheary elements. Int J Plant Sci 155(3):262–271

    CAS  Google Scholar 

  • Fukuda H (1996) Xylogenesis: initiation, progression, and cell death. Ann Rev Plant Physiol and Plant Mol Biol 47:299–325

    CAS  Google Scholar 

  • Gamaley YuV (1972) Cytological basics of xylem differentiation. Nauka, Leningrad, 208 pp (in Russian)

    Google Scholar 

  • Goujon T, Minic Z, Amrani AE, Lerouxel O, Aletti E, Lapierre C, Joseleau J-P, Jouanin L (2003) AtBXL1, a novel higher plant (Arabidopsis thaliana) putative beta-xylosidase gene, is involved in secondary cell wall metabolism and plant development. Plant J 33(4):677–690

    CAS  Google Scholar 

  • Graham IA (1996) Carbohydrate control of gene expression in higher plants. Res Microbiol 147:572–580

    CAS  Google Scholar 

  • Gregory RA (1971) Cambial activity in Alaskan white spruce. Am J Bot 58(2):160–171

    Google Scholar 

  • Gregory RA, Wilson BF (1968) A comparison of cambial activity of white spruce in Alaska and New England. Can J Bot 46:733–734

    Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Koch G, Schmitt U, Oven P (2006) Effect of local heating and controlling on cambial activity and cell differentiation in the stem of Norway spruce (Picea abies). Ann Bot 97:943–951

    Google Scholar 

  • Grillos SJ, Smith FH (1959) The secondary phloem of Douglas-fir. Forest Sci 5:377–388

    Google Scholar 

  • Grissino-Mayer HD (1996) A 2129-year reconstruction of precipitation for northwestern New Mexico, USA. In: Dean JS, Meko DM, Swetnam TW (eds) Tree-rings, environment and humanity. Radiocarbon. University of Arizona Press, Tucson, Arizona, pp 191–204

    Google Scholar 

  • Hertzberg M, Aspeborg H, Schrader J, Andersson A, Erlandsson R, Blomqvist K, Bhalerao R, Uhlen M, Teeri TT, Lundberg J, Sundberg B, Nilsson P, Sandberg G (2001) A transcriptional roadmap to wood formation. Proc Natl Acad Sci USA 98:14732–14737

    CAS  Google Scholar 

  • Hoogesteger J, Karlsson PS (1992) Effects of defoliation on radial stem growth and photosynthesis in the mountain birch (Betula pubescens ssp. tortuosa). Funct Ecol 6(3):317–323

    Google Scholar 

  • Howard RA, Wilson BF (1972) A stochastic model for cambial activity. Bot Gaz 133:410–414

    Google Scholar 

  • Howe GT, Hackett WP, Furnier GR, Klevorn RE (1995) Photoperiodic responses of a northern and southern ecotype of black cottonwood. Physiol Plantarum 93:695–708

    CAS  Google Scholar 

  • Hughes MK (2002) Dendrochronology in climatology—the state of the art. Dendrochronologia 20:95–116

    Google Scholar 

  • Hughes MK, Kelly PM, Pilcher JR, La Marche VC (eds) (1982) Climate from tree rings. Cambridge University Press, Cambridge, 223 pp

    Google Scholar 

  • Hughes MK, Schweingruber FH, Cartwright D, Kelly PM (1984) July–August temperature at Edinburgh between 1721 and 1975 from tree-ring density and width data. Nature 308(5957):341–344

    Google Scholar 

  • Hughes MK, Vaganov EA, Shiyatov S, Touchan R, Funkhouser G (1999) Twentieth-century summer warmth in northern Yakutia in a 600-year context. Holocene 9(5):603–608

    Google Scholar 

  • Iqbal M (ed) (1990) The vascular cambium. Wiley, New York, 246 pp

    Google Scholar 

  • Ito J, Fukuda H (2002) ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14:3201–3211

    CAS  Google Scholar 

  • Jacoby GC, Lovelius NV, Shumilov OI, Raspopov OM, Karbainov JM, Frank DC (2000) Long-term temperature trends and tree growth in the Taymir region of northern Siberia. Quaternary Res 53:312–318

    Google Scholar 

  • Jones B, Tardif J, Westwood R (2004) Weekly xylem production in trembling aspen (Populus tremuloides) in response to artificial defoliation. Can J Bot 82(5):590–597

    Google Scholar 

  • Kirdyanov A, Hughes MK, Vaganov E, Schweingruber F, Silkin P (2003) The importance of early summer temperatures and date of snow melt for tree growth in Siberian subarctic. Trees 17:61–69

    Google Scholar 

  • Kirst M, Johnson AF, Bancom C, Ulrich E, Hubbard K, Straggs R, Paule C, Retzel E, Whetten R, Sederoff R (2003) Apparent homology of expressed genes from wood forming tissues of loblolly pine (Pinus taeda L.) with Arabidopsis thaliana. Proc Natl Acad Sci USA 100:7383–7388

    Google Scholar 

  • Körner C (1998) A re-assessment of high elevation treeline positions and their explanation. Oecologia 115(4):445–459

    Google Scholar 

  • Körner C (2003) Carbon limitation in trees. J Ecol 91(1):4–17

    Google Scholar 

  • Kozlowski TT (ed) (1968) Water deficits and plant growth, vol 1. Academic, New York, 398 pp

    Google Scholar 

  • Kozlowski TT, Pallardy SG (1997) Growth control in woody plants. Academic, San Diego, 641 pp

    Google Scholar 

  • Kutscha NP, Hyland F, Schwarzmann JM (1975) Certain seasonal changes in balsam fir cambium and its derivatives. Wood Sci Technol 9:175–188

    Google Scholar 

  • Larson PR (1962) The indirect effect of photoperiod on tracheid diameter in Pinus resinosa. Am J Bot 49:132–137

    Google Scholar 

  • Larson PR (1964) Some indirect effects of environment on wood formation. In: Zimmermann M (ed) The formation of wood in forest trees. Academic, New York, pp 345–366

    Google Scholar 

  • Larson PR (1969) Wood formation and the concept of wood quality. School of Forestry and Environmental Studies, Bull No 74. Yale University, New Haven, Connecticut, USA, pp 3–17

    Google Scholar 

  • Larson PR (1994) The vascular cambium: development and structure. Springer-Verlag, New York, Berlin, Doldrecht, 725 pp

    Google Scholar 

  • Leikola M (1969) The influence of environmental factors on the diameter growth of young trees. Acta For Fenn 92:1–44

    Google Scholar 

  • LeRoux X, Laconinte A, Escobar-Guitierrez A, LeDizès S (2001) Carbon-based models of individual tree-growth: a critical appraisal. Ann For Sci 58:469–506

    Google Scholar 

  • Lev-Yadun S, Aloni R (1995) Differentiation of the ray system in woody plants. Bot Rev 61:45–84

    Google Scholar 

  • Makela A (1990) Modeling structural-functional relationships in whole-tree growth: resource allocation. In: Dixon R, Meldahl R, Ruark G, Warren W (eds) Process-modeling of forest growth responses to environmental stress. Timber Press, Portland, Oregon, pp 81–95

    Google Scholar 

  • Mann ME, Bradley RS, Hughes MK (1998) Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392:779–787

    CAS  Google Scholar 

  • McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quaternary Sci Rev 23:771–801

    Google Scholar 

  • Mikola P (1962) Temperature and tree growth near the northern timberline. In: Kozlowski TT (ed) Tree growth. Ronald, New York, pp 265–287

    Google Scholar 

  • Misson L (2004) Maiden: a model for analyzing ecosystem processes in dendroecology. Can J Forest Res 34:874–887

    Google Scholar 

  • Mullen JL, Ishikawa H, Evans ML (1998) Analysis of changes in relative elemental growth rate patterns in the elongation zone of Arabidopsis roots upon gravistimulation. Planta 206:598–603

    CAS  Google Scholar 

  • Nieminen KM, Kauppinen L, Helariutta Y (2004) A weed for wood? Arabidopsis as a genetic model for xylem development. Plant Physiol 135:653–659

    CAS  Google Scholar 

  • Parkerson RH, Whitmore F (1972) A correlation of stem sugars, starch, and lipid with wood formation in eastern white pine. Forest Sci 18:178–183

    CAS  Google Scholar 

  • Pederson N, Cook ER, Jacoby GC, Peteet DM, Griffin KL (2004) The influence of winter temperatures on the annual radial growth of six northern-range-margin tree species. Dendrochronologia 22:7–29

    Google Scholar 

  • Peterson TC, Vose RS (1997) An overview of the global historical climatology network temperature database. B Am Meteorol Soc 78:2837–2849

    Google Scholar 

  • Plomion C, Leprovost G, Stokes A (2001) Wood formation in trees. Plant Physiol 127:1513–1523

    CAS  Google Scholar 

  • Preston RD (1974) The physical biology of plant cell walls. Chapman and Hall, London, 250 pp

    Google Scholar 

  • Pritchard J (1994) The control of cell expansion in roots. New Phytol 127:3–26

    CAS  Google Scholar 

  • Rayle DL, Cleland RE (1992) The acid growth theory of auxin-induced cell elongation is alive and well. Plant Physiol 99:1271–1274

    CAS  Google Scholar 

  • Richardson DD (1964) The external environment and tracheid size in conifers. In: Zimmermann M (ed) The formation of wood in forest trees. Academic, New York, pp 367–388

    Google Scholar 

  • Roberts LW (1976) Cytodifferentiation in plants: xylogenesis as a model system. Cambridge University Press, Cambridge, 160 pp

    Google Scholar 

  • Roland JC (1978) Early differences between radial walls and tangential walls of actively growing cambial zone. IAWA Bull 1:7–10

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti R (2006) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Carraro V (2007) Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia152:1–12

    Google Scholar 

  • Salzer M, Kipfmueller KF (2005) Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the southern Colorado Plateau, USA. Climatic Change 70(3):465–487

    CAS  Google Scholar 

  • Savidge RA (1983) The role of plant hormones in higher plant cellular differentiation. II. Experiments with the vascular cambium, and sclereid and tracheid differentiation in the pine, Pinus contorta. Histochem J 15(5):447–466

    CAS  Google Scholar 

  • Savidge RA (1993) Formation of annual rings in trees. In: Rensing L (ed) Oscillations and morphogenesis. Marcel Dekker, New York, pp 343–363

    Google Scholar 

  • Savidge RA (1996) Xylogenesis, genetic and environmental regulation. IAWA J 17(3):269–310

    Google Scholar 

  • Savidge RA (2000a) Intrinsic regulation of cambial growth. Plant Growth Regul 20:52–77

    Google Scholar 

  • Savidge RA (2000b) Biochemistry of seasonal cambial growth and wood formation—an overview of the challenges. In: Savidge RA, Barnett JR, Napier R (eds) Cell and molecular biology of wood formation. Bios Scientific Publishers, Oxford, pp 1–30

    Google Scholar 

  • Schmid R (1976) The elusive cambium—another terminological contribution. IAWA Bull 4:51–59

    Google Scholar 

  • Schrader J, Baba K, May ST, Palmek K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the wood forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100(17):10096–10101

    CAS  Google Scholar 

  • Schweingruber FH (1988) Tree ring: basics and applications of dendrochronology. Reidel, Dordrecht, 276 pp

    Google Scholar 

  • Schweingruber FH (1993) Trees and wood in dendrochronology. Springer, Berlin, Heidelberg, New York, 386 pp

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment. Dendroecology. Paul Haupt, Berne, Stuttgart, Vienna, 609 pp

    Google Scholar 

  • Shashkin AV, Vaganov EA (1993) Simulation model of climatically determined variability of conifers annual increment (on the example of Scots pine in the steppe zone). Russ J Ecol 24(5):275–280

    Google Scholar 

  • Skene DS (1972) The kinetics of tracheid development in Tsuga canadensis Carr and its relation to tree vigour. Ann Bot 36:179–187

    Google Scholar 

  • Somerville C, Bauer S, Brininstool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Towards a systems approach to understanding plant cell wall. Science 306:2206–2211

    CAS  Google Scholar 

  • Speer J, Swetnam T, Wickman B, Youngblood A (2001) Changes in Pandora moth outbreak dynamics during the past 622 years. Ecology 82(3):679–697

    Google Scholar 

  • Stahle DW, Cleaveland MK (1992) Reconstruction and analysis of spring rainfall over the southeastern US for the past 1000 years. B Am Meteorol Soc 73:1947–1961

    Google Scholar 

  • Sundberg B, Ericsson A, Little C, Nasholm T, Gref R (1993) The relationship between crown size and ring width in Pinus sylvestris L. stems: dependence on indole-3-acetic acid, carbohydrates and nitrogen in the cambial region. Tree Physiol 12(4):347–62

    CAS  Google Scholar 

  • Sviderskaya IV (1999) Histometric analysis of patterns of seasonal formation of conifer wood. PhD Dissertation, IF SB RAS, Krasnoyarsk, 167 pp (in Russian)

    Google Scholar 

  • Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Phys 35:583–657

    Google Scholar 

  • Thomas D, Montagu K, Conroy J (2006) Effects of leaf and branch removal on carbon assimilation and stem wood density of Eucalyptus grandis seedlings. Trees-Struct Funct 20(6):725–733

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Publ Climatol 8, 104 pp

    Google Scholar 

  • Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286

    CAS  Google Scholar 

  • Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signaling. Plant Physiol 117:113–121

    CAS  Google Scholar 

  • Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039

    CAS  Google Scholar 

  • Vaganov EA (1996a) Mechanisms and simulation of tree ring formation in conifer wood. Lesovedenie (Russ J For Sci) 1:3–15 (in Russian)

    Google Scholar 

  • Vaganov EA (1996b) Analysis of a seasonal growth patterns of trees and modelling in dendrochronology. In: Dean J, Swetnam T, Meko D (eds) Tree-rings, climate and humanity. Radiocarbon 1996:73–87

    Google Scholar 

  • Vaganov EA (1996c) Recording of warming in current century by tracheids of the annual tree rings. Dokl Biol Sci 351:281–283

    CAS  Google Scholar 

  • VaganovEA, Kachaev AV (1992) Dendroclimatic study of pine growth in forest-peat phytocoenoces of the Tomsk region. Lesovedenie (Russ J For Sci) 6:3–10 (in Russian)

    Google Scholar 

  • Vaganov EA, Shashkin AV, Sviderskaya IV, Vysotskaya LG (1985) Histometric analysis of woody plant growth. Nauka, Novosibirsk, 102 pp (in Russian)

    Google Scholar 

  • Vaganov EA, Sviderskaya IV, Kondrateva EN (1990) The weather conditions and tree ring structure: the simulation model of tracheidogram. Lesovedenie (Russ J For Sci) 2: 37–45 (in Russian)

    Google Scholar 

  • Vaganov EA, Shashkin AV, Sviderskaya IV (1992) Seasonal growth and formation of tree rings: the kinetics approach and simulation modeling. In: Giterson II (ed) Biophysics of cell populations and organisms’ systems. Nauka, Novosibirsk, pp 140–150 (in Russian)

    Google Scholar 

  • Vaganov EA, Hughes MK, Kirdyanov AV, Schweingruber FH, Silkin PP (1999) Influence of snowfall and melt timing on tree growth in subarctic Eurasia. Nature 400:149–151

    CAS  Google Scholar 

  • Vaganov EA, Hughes MK, Shashkin AV (2006) Growth dynamics of tree rings: an image of past and future environments. Springer-Verlag, Berlin, 368 pp

    Google Scholar 

  • Villalba R, Grau HR, Boninsegna J, Jacoby G, Ripalta A (1998) Tree-ring evidence for long-term precipitation changes in subtropical South America. Int J Climatol 18:1463–1478

    Google Scholar 

  • Waisel Y, Fahn A (1956) The effect of environment on wood formation and cambial activity in Robinia pseudoacacia L. New Phytol 64:436–442

    Google Scholar 

  • Wareing PF, Roberts DL (1956) Photoperiodic control of cambial activity in Robinia pseudoacacia L. New Phytol 55:356–366

    Google Scholar 

  • Watson E, Luckman B (2004) Tree-ring based reconstructions of precipitation for the southern Canadian Cordillera. Climatic Change 65(1–2):209–241

    Google Scholar 

  • Wheelwright N, Logan B (2004) Previous-year reproduction reduces photosynthetic capacity and slows lifetime growth in females of a neotropical tree. Proc Natl Acad Sci USA 101(21):8051–8055

    CAS  Google Scholar 

  • Wilmking M, Juday GP, Barber VA, Zald HSJ (2004) Recent climate warming forces contrasting growth responses of white spruce at treeline in Alaska through temperature thresholds. Global Change Biol 10:1724–1736

    Google Scholar 

  • Wilmking M, D’Arrigo R, Jacoby GC, Juday G (2005) Increased temperature sensitivity and divergent growth trends in circumpolar boreal forests. Geophys Res Lett 32(L15):715. doi:10.1029/2005GL023331

    Google Scholar 

  • Wilson BF (1964) A model for cell production by the cambium of conifers. In: Zimmermann MH (ed) The formation of wood in forest trees. Academic, New York, pp 19–34

    Google Scholar 

  • Wilson BF (1966) Mitotic activity in the cambial zone of Pinus strobus. Am J Bot 53:364–372

    Google Scholar 

  • Wilson BF (1973) A diffusion model for tracheid production and enlargement in conifers. Bot Gaz 134:189–196

    Google Scholar 

  • Wilson BF, Howard RA (1968) A computer model for cambial activity. Forest Sci 14:77–90

    Google Scholar 

  • Wodzicki TJ (1971) Mechanism of xylem differentiation in Pinus sylvestris L. Exp Bot 22:670–687

    Google Scholar 

  • Zahner R (1968) Water deficits and growth of trees. In: Kozlowski TT (ed) Water deficits and plant growth, II. Academic, New York London, pp 191–254

    Google Scholar 

  • Zahner R, Oliver WW (1962) The influence of thinning and pruning on the date of summerwood initiation in red and jack pines. Forest Sci 8:51–63

    Google Scholar 

  • Zimmermann MH (1964) The formation of wood in forest trees. Academic, New York, 562 pp

    Google Scholar 

  • Zimmermann MH, Brown CL (1971) Trees: structure and function. Springer-Verlag, Berlin, 336 pp

    Google Scholar 

Download references

Acknowledgements

KJA was supported by a graduate training fellowship from the NSF IGERT Program (DGE-0221594) and a Graduate Research Environmental Fellowship (to KJA) from the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Vaganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Vaganov, E.A., Anchukaitis, K.J., Evans, M.N. (2011). How Well Understood Are the Processes that Create Dendroclimatic Records? A Mechanistic Model of the Climatic Control on Conifer Tree-Ring Growth Dynamics. In: Hughes, M., Swetnam, T., Diaz, H. (eds) Dendroclimatology. Developments in Paleoenvironmental Research, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5725-0_3

Download citation

Publish with us

Policies and ethics